International Journal of Fuzzy Logic and Intelligent Systems 2023; 23(1): 34-43
Published online March 25, 2023
https://doi.org/10.5391/IJFIS.2023.23.1.34
© The Korean Institute of Intelligent Systems
T. Yogashanthi1, Shakeela Sathish1, and K. Ganesan2
1Department of Mathematics, SRM Institute of Science and Technology, Ramapuram, Chennai, India
2Department of Mathematics, SRM Institute of Science and Technology, Kattankulathur, Chennai, India
Correspondence to :
Shakeela Sathish (shakeels@srmist.edu.in)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Setup time is the amount of time required for a machine to adjust its settings or the preparation of a device at each stage to process and deliver a completed job. A novel approach for the n-job 2-machine generalized intuitionistic fuzzy flow shop scheduling problem, subject to the setup time, was proposed. When the machines are kept in different places, the transporting and return times of transport play a significant role in the production. Generalized triangular intuitionistic fuzzy numbers were considered to represent the processing, setup, transportation, and return times. This study aims to minimize the intuitionistic fuzzy total production time with less vagueness.
Keywords: Generalized intuitionistic fuzzy number, Flow shop scheduling, Left fuzziness index, Right fuzziness index, Euclidean distance
No potential conflict of interest relevant to this article was reported.
E-mail: yogashanthi13@gmail.com
E-mail: shakeels@srmist.edu.in
E-mail: ganesank@srmist.edu.in
International Journal of Fuzzy Logic and Intelligent Systems 2023; 23(1): 34-43
Published online March 25, 2023 https://doi.org/10.5391/IJFIS.2023.23.1.34
Copyright © The Korean Institute of Intelligent Systems.
T. Yogashanthi1, Shakeela Sathish1, and K. Ganesan2
1Department of Mathematics, SRM Institute of Science and Technology, Ramapuram, Chennai, India
2Department of Mathematics, SRM Institute of Science and Technology, Kattankulathur, Chennai, India
Correspondence to:Shakeela Sathish (shakeels@srmist.edu.in)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Setup time is the amount of time required for a machine to adjust its settings or the preparation of a device at each stage to process and deliver a completed job. A novel approach for the n-job 2-machine generalized intuitionistic fuzzy flow shop scheduling problem, subject to the setup time, was proposed. When the machines are kept in different places, the transporting and return times of transport play a significant role in the production. Generalized triangular intuitionistic fuzzy numbers were considered to represent the processing, setup, transportation, and return times. This study aims to minimize the intuitionistic fuzzy total production time with less vagueness.
Keywords: Generalized intuitionistic fuzzy number, Flow shop scheduling, Left fuzziness index, Right fuzziness index, Euclidean distance
Generalized triangular intuitionistic fuzzy number.
Table 1 . Conceptual model of the problem in matrix form.
Job | Machine | Machine | ||||
---|---|---|---|---|---|---|
1 | ||||||
2 | ||||||
3 | ||||||
4 | ||||||
– | – | – | – | – | – | |
– | – | – | – | – | – | |
n |
Table 2 . Handling durations as GTIFNs.
Job | Machine | Machine | ||||
---|---|---|---|---|---|---|
1 | (〈2, 3, 4〉, 0.5, 0.5) | (〈6, 7, 8〉, 0.5, 0.5) | (〈4, 4, 4〉, 0.5, 0.5) | (〈3, 3, 3〉, 0.5, 0.5) | (〈2, 4, 6〉, 0.5, 0.5) | (〈7, 8, 9〉, 0.5, 0.5) |
2 | (〈1, 2, 3〉, 0.5, 0.5) | (〈10, 11, 12〉, 0.5, 0.5) | (〈8, 8, 8〉, 0.5, 0.5) | (〈3, 3, 3〉, 0.5, 0.5) | (〈2, 3, 4〉, 0.5, 0.5) | (〈12, 13, 14〉, 0.5, 0.5) |
3 | (〈2, 4, 6〉, 0.5, 0.5) | (〈5, 7, 8〉, 0.5, 0.5) | (〈10, 10, 10〉, 0.5, 0.5) | (〈3, 3, 3〉, 0.5, 0.5) | (〈1, 2, 3〉, 0.5, 0.5) | (〈6, 7, 8〉, 0.5, 0.5) |
4 | (〈1, 2, 3〉, 0.5, 0.5) | (〈8, 10, 12〉, 0.5, 0.5) | (〈3, 3, 3〉, 0.5, 0.5) | (〈3, 3, 3〉, 0.5, 0.5) | (〈3, 4, 5〉, 0.5, 0.5) | (〈9, 10, 11〉, 0.5, 0.5) |
5 | (〈2, 3, 4〉, 0.5, 0.5) | (〈7, 8, 9〉, 0.5, 0.5) | (〈5, 5, 5〉, 0.5, 0.5) | (〈3, 3, 3〉, 0.5, 0.5) | (〈1, 2, 3〉, 0.5, 0.5) | (〈4, 5, 6〉, 0.5, 0.5) |
Table 3 . Parametric form of processing durations.
Job | Machine | Machine | ||||
---|---|---|---|---|---|---|
1 | (〈3, 1 − 2r, 1 − 2r〉, 〈3, −1 + 2r*, −1 + 2r*〉, 0.5, 0.5) | (〈7, 1 − 2r, 1 − 2r〉, 〈7, −1 + 2r*, −1 + 2r*〉, 0.5, 0.5) | (〈4, 0, 0〉, 〈4, 0, 0〉, 0.5, 0.5) | (〈4, 0, 0〉, 〈4, 0, 0〉, 0.5, 0.5) | (〈4, 2 − 4r, 2 − 4r〉, 〈4, −2 + 4r*, −2 + 4r*〉, 0.5, 0.5) | (〈8, 1 − 2r, 1 − 2r〉, 〈8, −1 + 2r*, −1 + 2r*〉, 0.5, 0.5) |
2 | (〈2, 1 − 2r, 1 − 2r〉, 〈2, −1 + 2r*, −1 + 2r*〉, 0.5, 0.5) | (〈11, 1 − 2r, 1 − 2r〉, 〈11, −1 + 2r*, −1 + 2r*〉, 0.5, 0.5) | (〈8, 0, 0〉, 〈8, 0, 0〉, 0.5, 0.5) | (〈3, 0, 0〉, 〈3, 0, 0〉, 0.5, 0.5) | (〈3, 1 − 2r, 1 − 2r〉, 〈3, −1 + 2r*, −1 + 2r*〉, 0.5, 0.5) | (〈13, 1 − 2r, 1 − 2r〉, 〈13, −1 + 2r*, −1 + 2r*〉, 0.5, 0.5) |
3 | (〈4, 2 − 4r, 2 − 4r〉, 〈4, −2 + 4r*, −2 + 4r*〉, 0.5, 0.5) | (〈7.5, 2.5 − 4r, 0.5 − 2r〉, 〈7.5, −1.5 + 4r*, −1.5 + 2r*〉, 0.5, 0.5) | (〈10, 0, 0〉, 〈10, 0, 0〉, 0.5, 0.5) | (〈3, 0, 0〉, 〈3, 0, 0〉, 0.5, 0.5) | (〈2, 1 − 2r, 1 − 2r〉, 〈2, −1 + 2r*, −1 + 2r*〉, 0.5, 0.5) | (〈7, 1 − 2r, 1 − 2r〉, 〈7, −1 + 2r*, −1 + 2r*〉, 0.5, 0.5) |
4 | (〈2, 1 − 2r, 1 − 2r〉, 〈2, −1 + 2r*, −1 + 2r*〉, 0.5, 0.5) | (〈10, 2 − 4r, 2 − 4r〉, 〈10, −2 + 4r*, −2 + 4r*〉, 0.5, 0.5) | (〈3, 0, 0〉, 〈3, 0, 0〉, 0.5, 0.5) | (〈3, 0, 0〉, 〈3, 0, 0〉, 0.5, 0.5) | (〈4, 1 − 2r, 1 − 2r〉, 〈4, −1 + 2r*, −1 + 2r*〉, 0.5, 0.5) | (〈10, 1 − 2r, 1 − 2r〉, 〈10, −1 + 2r*, −1 + 2r*〉, 0.5, 0.5) |
5 | (〈3, 1 − 2r, 1 − 2r〉, 〈3, −1 + 2r*, −1 + 2r*〉, 0.5, 0.5) | (〈8, 1 − 2r, 1 − 2r〉, 〈8, −1 + 2r*, −1 + 2r*〉, 0.5, 0.5) | (〈5, 0, 0〉, 〈5, 0, 0〉, 0.5, 0.5) | (〈3, 0, 0〉, 〈3, 0, 0〉, 0.5, 0.5) | (〈2, 1 − 2r, 1 − 2r〉, 〈2, −1 + 2r*, −1 + 2r*〉, 0.5, 0.5) | (〈5, 1 − 2r, 1 − 2r〉, 〈5, −1 + 2r*, −1 + 2r*〉, 0.5, 0.5) |
Table 4 . Representation of two fictitious machines.
Job | ||
---|---|---|
1 | (〈7, 2 − 4r, 2 − 4r〉, 〈7, −2 + 4r*, −2 + 4r*〉, 0.5, 0.5) | (〈9, 1 − 2r, 1 −2r〉, 〈9, −1 + 2r*, −1 + 2r*〉, 0.5, 0.5) |
2 | (〈16, 1 − 2r, 1 − 2r〉, 〈16, −1 + 2r*, −1 + 2r*〉, 0.5, 0.5) | (〈19, 1 − 2r, 1 −2r〉, 〈19, −1 + 2r*, −1 + 2r*〉, 0.5, 0.5) |
3 | (〈19, 2.5 − 4r, 1 − 2r〉, 〈19, −1.5 + 4r*, −1 + 2r*〉, 0.5, 0.5) | (〈16.5, 2.5 − 4r, 2 − 4r〉, 〈16.5, −1.5 + 4r*, −2 + 4r*〉, 0.5, 0.5) |
4 | (〈12, 2 − 4r, 2 − 4r〉, 〈12, −2 + 4r*, −2 + 4r*〉,0.5, 0.5) | (〈14, 2 − 4r, 2 − 4r〉, 〈14, −2 + 4r*, −2 + 4r*〉,0.5, 0.5) |
5 | (〈11, 1 − 2r, 1 − 2r〉, 〈11, −1 + 2r*, −1 + 2r*〉,0.5, 0.5) | (〈7, 1 − 2r, 1 − 2r〉, 〈7, −1 + 2r*, −1 + 2r*〉, 0.5, 0.5) |
Table 5 . In-out table.
Job | Machine | Machine | ||||||
---|---|---|---|---|---|---|---|---|
In | Out | In | Out | |||||
1 | (〈3, 1−2r, 1−2r〉, 〈3,− 1+2r*, − 1+2r*〉, 0.5, 0.5) | (〈10, 1−2r, 1−2r〉, 〈10,− 1+2r*, − 1+2r*〉, 0.5, 0.5) | (〈4, 0, 0〉, 〈4, 0, 0〉, 0.5, 0.5) | (〈3, 0, 0〉, 〈3, 0, 0〉, 0.5, 0.5) | (〈14, 1−2r, 1−2r〉, 〈14,− 1+2r*, − 1+2r*〉, 0.5, 0.5) | (〈18, 2−4r, 2−4r〉, 〈18, − 2+4r*, − 2+4r*〉, 0.5, 0.5) | (〈26, 2−4r, 2−4r〉, 〈26, − 2+4r*, − 2+4r*〉, 0.5, 0.5) | |
4 | (〈12, 1−2r, 1−2r〉, 〈12,− 1+2r*, − 1+2r*〉, 0.5, 0.5) | (〈22, 2−4r, 2−4r〉, 〈22,− 2+4r*, − 2+4r*〉, 0.5, 0.5) | (〈3, 0, 0〉, 〈3, 0, 0〉, 0.5, 0.5) | (〈3, 0, 0〉, 〈3, 0, 0〉, 0.5, 0.5) | (〈17, 1−2r, 1−2r〉, 〈17,− 1+2r*, − 1+2r*〉, 0.5, 0.5) | (〈25, 2−4r, 2−4r〉, 〈25, − 2+4r*, − 2+4r*〉, 0.5, 0.5) | (〈30, 2−4r, 2−4r〉, 〈30, − 2+4r*, − 2+4r*〉, 0.5, 0.5) | (〈40, 2−4r, 2−4r〉, 〈40, − 2+4r*, − 2+4r*〉, 0.5, 0.5) |
2 | (〈24, 2−4r, 2−4r〉, 〈24, − 2+4r*, − 2+4r*〉, 0.5, 0.5) | (〈35, 2−4r, 2−4r〉, 〈35, − 2+4r*, − 2+4r*〉, 0.5, 0.5) | (〈8, 0, 0〉, 〈8, 0, 0〉, 0.5, 0.5) | (〈3, 0, 0〉, 〈3, 0, 0〉, 0.5, 0.5) | (〈28, 2−4r, 2−4r〉, 〈28, − 2+4r*, − 2+4r*〉, 0.5, 0.5) | (〈43, 2−4r, 2−4r〉, 〈43, − 2+4r*, − 2+4r*〉, 0.5, 0.5) | (〈46, 2−4r, 2−4r〉, 〈46, − 2+4r*, − 2+4r*〉, 0.5, 0.5) | (〈59, 2−4r, 2−4r〉, 〈59, − 2+4r*, − 2+4r*〉, 0.5, 0.5) |
3 | (〈39, 2−4r, 2−4r〉, 〈39, − 2+4r*, − 2+4r*〉, 0.5, 0.5) | (〈46.5, 2.5−4r, 2−4r〉 〈46.5, − 1.5+4r*, − 2+4r*〉, 0.5, 0.5) | (〈10, 0, 0〉, 〈10, 0, 0〉, 0.5, 0.5) | (〈3, 0, 0〉, 〈3, 0, 0〉, 0.5, 0.5) | (〈46, 2−4r, 2−4r〉, 〈46, − 2+4r*, − 2+4r*〉, 0.5, 0.5) | (〈56.5, 2.5−4r, 2−4r〉, 〈56.5, − 1.5+4r*, − 2+4r*〉, 0.5, 0.5) | (〈61, 2−4r, 2−4r〉, 〈61, − 2+4r*, − 2+4r*〉, 0.5, 0.5) | (〈68, 2−4r, 2−4r〉, 〈68, − 2+4r*, − 2+4r*〉, 0.5, 0.5) |
5 | (〈 49.5, 2.5−4r, 2−4r 〉, 〈49.5, − 1.5+4r*, − 2+4r*〉, 0.5, 0.5) | (〈57.5, 2.5−4r, 2−4r 〉, 〈57.5, − 1.5+4r*, − 2+4r*〉, 0.5, 0.5) | (〈5, 0, 0〉, 〈5, 0, 0〉, 0.5, 0.5) | (〈3, 0, 0〉, 〈3, 0, 0〉, 0.5, 0.5) | (〈59.5, 2.5−4r, 2−4r〉, 〈59.5, − 1.5+4r*, − 2+4r*〉, 0.5, 0.5) | (〈62.5, 2.5−4r, 2−4r〉, 〈62.5, − 1.5+4r*, − 2+4r*〉, 0.5, 0.5) | (〈70, 2−4r, 2−4r〉, 〈70, − 2+4r*, − 2+4r*〉, 0.5, 0.5) | (〈75, 2−4r, 2−4r〉, 〈75, − 2+4r*, − 2+4r*〉, 0.5, 0.5) |
Zahra Roohanizadeh, Ezzatallah Baloui Jamkhaneh, and Einolah Deiri
International Journal of Fuzzy Logic and Intelligent Systems 2023; 23(3): 318-335 https://doi.org/10.5391/IJFIS.2023.23.3.318Lee-Chae Jang,WonJoo Kim,T. Kim
Int. J. Fuzzy Log. Intell. Syst. 2011; 11(1): 8-11 https://doi.org/10.5391/IJFIS.2011.11.1.008Generalized triangular intuitionistic fuzzy number.