Classification results in existing studies on snoring data
Feature extraction technique | Classifier | Data size | Test accuracy (%) | ||
---|---|---|---|---|---|
Subject | Training | ||||
Demir et al. [20] | LBP+HOG | SVM | - | 828 | 72.00 |
Lim et al. [11] | ZCR+STFT+MFCC | RNN | 8 | 5600 | 98.80 |
Kang et al. [6] | MFCC | CNN+LSTM | 24 | 24 | 88.28 |
Arsenali et al. [9] | MFCC | RNN | 20 | 5670 | 95.00 |
Khan [21] | MFCC | CNN | - | 1000 | 96.00 |
Wang et al. [22] | - | Dual CNN+GRU | - | 828 | 63.80 |
Tuncer et al. [10] | PTT signal+AlexNet+VGG16 | SVM+KNN | 100 | 100 | 92.78 |
Dalal and Triggs [23] | SCAT+GMM+MAP | MLP | 224 | 282 | 67.71 |
GRU, gated recurrent unit; SCAT, deep scattering spectrum; GMM, Gaussian mixture model; MAP, maximum a posteriori; MLP, multilayer perceptron