Performance Comparison in terms of F1 Score and MCC for three different models on four different datasets, before and after augmentation with various sizes and with data duplication technique
Model | Dataset | Before augmentation | Augmentation 10% | Augmentation 20% | Augmentation 30% | Data duplication 20% | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
F1 | MCC | F1 | MCC | F1 | MCC | F1 | MCC | F1 | MCC | ||
BERT | iSarcasm | 0.2421 | 0.3450 | 0.2499 | 0.3217 | 0.2567 | 0.2922 | 0.2410 | 0.3406 | ||
Ghosh | 0.7846 | 0.6184 | 0.7760 | 0.6042 | 0.7693 | 0.5963 | 0.7732 | 0.6048 | |||
Ptacek | 0.8596 | 0.7184 | 0.8602 | 0.7192 | 0.8598 | 0.7190 | 0.8587 | 0.7165 | |||
SemEval-18 | 0.6442 | 0.3642 | 0.6503 | 0.3825 | 0.6257 | 0.3505 | 0.6259 | 0.3578 | |||
RoBERTa | iSarcasm | 0.3834 | 0.2842 | 0.3809 | 0.2964 | 0.3828 | 0.2939 | 0.3925 | 0.2914 | ||
Ghosh | 0.7904 | 0.6299 | 0.7830 | 0.6284 | 0.7758 | 0.6193 | 0.7835 | 0.6294 | |||
Ptacek | 0.8735 | 0.7454 | 0.8738 | 0.7491 | 0.8727 | 0.7469 | 0.8717 | 0.7442 | |||
SemEval-18 | 0.6637 | 0.4109 | 0.6666 | 0.4286 | 0.6707 | 0.4362 | 0.6627 | 0.4134 | |||
DistilBERT | iSarcasm | 0.3083 | 0.2080 | 0.2924 | 0.1890 | 0.2784 | 0.1926 | 0.2991 | 0.2224 | ||
Ghosh | 0.7831 | 0.6148 | 0.7651 | 0.5854 | 0.7620 | 0.5799 | 0.7571 | 0.5700 | |||
Ptacek | 0.8542 | 0.7101 | 0.8538 | 0.7094 | 0.8508 | 0.7055 | 0.8569 | 0.7163 | |||
SemEval-18 | 0.6066 | 0.3180 | 0.6240 | 0.3534 | 0.6366 | 0.3822 | 0.6130 | 0.3261 |