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Abstract

In various scientific disciplines, including mathematics, physics, chemistry, biology, and
engineering, numerous challenges are modeled using linear and nonlinear integro-differential
equations. Researchers have developed analytical methods to address these issues and to find
effective solutions. This study explored the effectiveness of an Adomian decomposition method
based on modified Bernstein polynomials to solve nonlinear first-order integro-differential
equations. This hybrid method does not require any diminution presumptions or linearization to
solve these types of equations, and the arrangement methodology is extremely straightforward
with little emphasis on prompting a highly exact solution. This produced an extremely effective
strategy among the alternative strategies. The performance of the proposed method was
confirmed by comparing the exact and approximate solutions using examples. A comparison
of the results shown in numerical tables demonstrates the practical applicability of this method.
The computations were performed using the Maple software.
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1. Introduction

Recently, modified ADM has been successfully applied to linear and nonlinear problems in
various fields, for example, differential equations [1, 2], multi-dimensional time fractional
model of the Navier-Stokes equation [3], Van der Pol equation [4], fractional partial differential
equations [5], nonlinear integral equations [6], three-dimensional Fredholm integral equations
[7], heat and wave equations [8], Newell-Whitehead-Segel Equation [9], time-delay integral
equations [10] and others as in [11–25]. Modified Bernstein polynomials were combined with
the Adomian decomposition method (ADM) to solve the integro-differential equations. This
study focuses on nonlinear integro-differentials of the type.

du
dx
= f (x) +

∫ x

0
K

(
t, u(t), u′(t)

)
dt, (1)

where K(t, u(t), u′(t)) is the kernel function and f (x) is called the source-term.
It should be noted that many methods and techniques have been developed for solving these
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types of equations. Examples include the variational iteration
[26], Adomian decomposition and Tau Methods [27], homotopy
analysis [28], ADM [29], Laplace transform-optimal homotopy
asymptotic [30], Mahgoub transform [31], optimal homotopy
asymptotic method [32], homotopy perturbation method [33],
wavelet-Galerkin method [34], Sumudu and Elzaki integral
transforms [35].

In this study, an ADM based on modified Bernstein polynomi-
als was applied to solve nonlinear integro-differential equations.
Our aim was to modify the ADM to provide approximate so-
lutions for nonlinear first-order integro-differential equations.
This hybrid method finds a solution without discretization or
restrictive assumptions and avoids round-off errors. The funda-
mental advantage of this method is that it can be used specifi-
cally for all types of linear and nonlinear differential, integral,
and integro-differential equations. First, we briefly present the
definitions, properties, and notation of Bernstein polynomials.
Herein, we describe our new idea. Furthermore, the conver-
gence and maximum absolute errors of the method were pre-
sented. Herein, we discuss some examples of this phenomenon.
Additionally, we performed a comparative study with other
methods to test the accuracy of the proposed method.

2. Preliminaries

In the following section, we briefly present the basic defini-
tions, most important properties, and notation of the Bernstein
polynomials. Bernstein first used these polynomials in 1912
[36, 37].

Definition 1. A linear combination Bernstein based polyno-
mial

Bn(x) =
n∑

i=0

Bi,n(x)βi (2)

is called the Bernstein polynomials, where x ∈ [0, 1], βi are the
Bernstein coefficients, and Bi,n(x) = n!

i!(n−i)! xi(1 − x)n−i.
Definition 2. The nth Bernstein polynomial for f (x) can be

written as

Bn( f ) =
n∑

i=0

Bi,n(x) f
( i
n

)
. (3)

We are now giving the most important properties of these
polynomials.

1. Non negativity.

2. Symmetry, so Bi,n(x) = Bn−i,n(1 − x).

3. Linearly, so Bn (α f ∓ βg) = αBn ( f ) ∓ βBn (g) .

4. Each polynomial has only one maximum at x = i
n .

5.
∑n

i=0 Bi,n(x) = Bn (1, x) = 1.

6. For mathematical convenience, we write Bi,n(x) = 0 if
i < 0 or i > n.

7. The derivative of the n-th degree was

d
dx

Bi,n(x) = n
(
Bi−1,n−1(x) − Bi,n−1(x)

)
. (4)

8. It can be written as

Bi,n(x) =
(
(1 − x)Bi,n−1(x) + xBi−1,n−1(x)

)
, 0 ≤ i ≤ n.

(5)

Remark 1. The 2k-th order derivative f (2k) given by

B f
n (x) = f (x) +

2k−1∑
a=2

f (a)(x)
a!na Tn,a(x) + O

(
1
nk

)
, (6)

where

Tn,a(x) =
∑

k

(k − nx)a
(
n
k

)
xk(1 − x)n−k. (7)

3. Description of the Method

This section describes the application of the modified ADM
with a Bernstein polynomial for solving the nonlinear first-
order integro-differential equations. We will rewrite Eq. (1) as
follows:

Lu = f (x) +
∫ x

0
N(u)dt, (8)

where Lu = du
dx and N(u) is a nonlinear term.

To solve this problem, we take L−1 such that L−1(.) =
∫ x

0 .dx
to both sides

u(x) − u(0) = g(x) +L−1
∫ x

0
N(u)dt, (9)

where g(x) =
∫ x

0 f (t)dx.
The Adomian polynomial N(u) is as follows:

N(u) =
∫ ∞

n=0
An, (10)

where An =
1
n!

dn

dγn

[
N

(∑∞
i=0 γ

iui

)]
, n = 0, 1, 2, . . . .
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Using Eqs. (3), (4), and (6), we obtain the following modified
Bernstein series:

f (x) =
n∑

i=0

(
n
i

)
xi(1 − x)n−ig

( i
n

)
−

2k−1∑
a=2

(
da

dxa

)
Bi,n(x)

a!na Tn,a(x).

(11)

The solution u(x) is given by

u(x) =
∫ ∞

j=0
u j(x). (12)

Substituting Eqs. (10), (11), and (12) into Eq. (9), we have

∞∑
j=0

u j(x) = u(0) +
n∑

i=0

(
n
i

)
xi(1 − x)n−ig

( i
n

)

−

2k−1∑
a=2

(
da

dxa

)
Bi,n(x)

a!na Tn,a(x) +L−1
∫ x

0
Andt. (13)

Therefore, the solutions of Eq. (1) are given by

u0(x) = u(0) +L−1
n∑

i=0

(
n
i

)
xi(1 − x)n−ig

( i
n

)

−

2k−1∑
a=2

(
da

dxa

)
Bi,n(x)

a!na Tn,a(x),

u1(x) = L−1
∫ x

0
A0dt,

u2(x) = L−1
∫ x

0
A1dt,

...

un+1(x) = L−1
∫ x

0
Andt, n = 0, 1, 2, . . . . (14)

4. Convergence of the Method

This section presents the convergence of the proposed method
for solving nonlinear integro-differential equations. Further-
more, the maximum absolute error is determined.

Theorem 1. The series un(x) =
∑∞

j=0 u j(x) of Eq. (1)
converges if α ∈ [0, 1) and ∥un+1(x)∥ = α ∥un(x)∥ such that
∥u0(x)∥ < ∞.

Proof. Let S n = u1(x)+ u2(x)+ ...+ un(x). For n ≤ m, we are
going to prove that S n is a Cauchy sequence.

∥S m − S n∥ =

∥∥∥∥∥∫ m

i=0
ui(x) −

∫ n

i=0
ui(x)

∥∥∥∥∥ = ∫ m

i=n+1
ui(x).

We have the following sequence

∥S m − S n∥ =
∥∥∥(S n+1 − S n) + (S n+2 − S n+1) + (S n+3 − S n+2)

+ · · · + (S m − S m−1)
∥∥∥

≤ ∥(S n+1 − S n)∥ + ∥(S n+2 − S n+1)∥

+ ∥(S n+3 − S n+2)∥ + · · · + ∥(S m − S m−1)∥

≤ αn+1 ∥(u0)∥ + αn+2 ∥(u0)∥ + αn+3 ∥(u0)∥

+ · · · + αm ∥(u0)∥

≤
(
αn+1 + αn+2 + αn+3 + · · · + αm

)
∥(u0)∥

≤ αn+1
(
1 + α + α2 + α3 · · · + αm−n−1

)
∥(u0)∥

≤ αn+1
(

1 − αm−n

1 − α

)
∥(u0)∥ .

Since α ∈ [0, 1) then 1 − αm−n < 1.
This in turn gives

∥S m − S n∥ ≤

(
αn+1

1 − α

)
∥(u0)∥ .

But we know that ∥u0(x)∥ < ∞, yields

∥S m − S n∥ → 0 as n→ 0.

Therefore, Theorem 1 is proven. □

Theorem 2. The maximum absolute error of un(x)=
∞∑
j=0

u j(x)

is

max
∀x∈J

∣∣∣∣∣∣∣u(x) −
n∑

i=0

ui(x)

∣∣∣∣∣∣∣ ≤
(
αn+1

1 − α

)
max
∀x∈J
∥(u0)∥ .

Proof. If m→ ∞ then S m → u(x), yields

∥u(x) − S n∥ ≤

(
αn+1

1 − α

)
∥(u0)∥ .

Therefore, we have

max
∀x∈J

∣∣∣∣∣u(x) −
∫ n

i=0
ui(x)

∣∣∣∣∣ ≤ (
αn+1

1 − α

)
max
∀x∈J
∥(u0)∥ .

Therefore, Theorem 2 is proven. □

5. Examples

The main objective here is to solve some examples of nonlinear
first-order integro-differential equations using the new modified
method to demonstrate its accuracy.

Example 1. Consider the nonlinear integro-differential equa-
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tion as follows:

du
dx
= −1 +

∫ x

0
u2(t)dt, x ∈ [0, 1], (15)

with boundary condition u(0) = 0 and exact solution u(x) = −x.

Introducing Eq. (10) into Eq. (15) and taking L−1 to both
sides, yields

u(x) − u(0) = L−1

−1 +
∫ x

0

∞∑
n=0

An(t)dt

 . (16)

Combining Eq. (12) and Eq. (16), we have

∞∑
j=0

u j(x) = L−1

−1 +
∫ x

0

∞∑
n=0

An(t)dt

 . (17)

As suggested in Eqs. (11)-(14), when m = 6 and k = 2, the
following solutions were obtained.

u0(x) = L−1
6∑

i=0

(
6
i

)
xi(1 − x)6−i f

( i
6

)
−

3∑
a=2

(
da

dxa

)
Bi,6(x)

a!6a T6,a(x)

= −x(1 − x)5 − 5x2(1 − x)4 − 10x3(1 − x)3 − 10x4(1 − x)2

− 5x5(1 − x) − x6 = −x,

u1(x) =
∫ x

0

∫ x

0
A0dtdx =

∫ x

0

∫ x

0
u0

2(t)dtdx =
1
12

x4,

u2(x) =
∫ x

0

∫ x

0
A1dtdx =

∫ x

0

∫ x

0
2u0(t)u1(t)dtdx = −

1
252

x7,

u3(x) =
∫ x

0

∫ x

0
A2dtdx =

∫ x

0

∫ x

0
2u0(t)u2(t) + u1

2(t)dtdx

=
1

6048
x10,

u4(x) =
∫ x

0

∫ x

0
A3dtdx =

∫ x

0

∫ x

0
2u0(t)u3(t) + 2u(t)u2(t)dtdx

= −
1

157248
x13,

and so on.

The solution of Eq. (15) becomes

um(x) =
∫ m

j=0
ui = u0(x) + u1(x) + u2(x) + . . .

= −x +
1

12
x4 −

1
252

x7 +
1

6048
x10 −

1
157248

x13 + . . . .

(18)

This converges to the exact solution u(x) = −x. Table 1
shows a comparison between the first fourth-order approximate
solutions u4(x) of Example 1 and the solutions in [29, 33, 34].
Figure 1 presents a numerical comparison of the proposed solu-

Figure 1. Numerical comparison between our solution u4(x) and the
exact solution for Example 1.

Figure 2. Absolute error for Example 1.

tion, u4(x) and the exact solution. Figure 2 shows the absolute
errors for Example 1.

Example 2. Consider the nonlinear integro-differential equa-
tion as follows:

du
dx
= 1 +

∫ x

0
e−tu2(t)dt, (19)

with boundary condition u(0) = 1 and exact solution u(x) = ex.

Using Eq. (10) in Eq. (19) and L−1 on both sides, we obtain

∞∑
j=0

u j(x) = u(0) +L−1

1 + ∫ x

0

∞∑
n=0

An(t)dt

 .
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Table 1. Comparison between our first fourth-order approximate solutions u4(x) of Example 1 and the solutions in other studies

xxx Exact u4(x)u4(x)u4(x) ADM [29] WGM [33] HPM [34]

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0312 - 0.0312 -0.03119992103 - 0.0311999 -0.0312 -0.03120

0.0625 - 0.0625 -0.06249872844 - 0.0624987 -0.0625 -0.06250

0.0938 - 0.0938 -0.09379354920 - 0.0937935 -0.0937 -0. 09380

0.1250 - 0.1250 -0.3978731510 - 0.1249800 -0.1250 -0. 12498

0.1562 - 0.1562 -0.1561504020 - 0.1561500 -0.1562 -0. 15615

0.1875 - 0.1875 -0.1873970355 - 0.1873970 -0.1874 -0.18740

0.2188 - 0.2188 -0.2186091064 - 0.2186090 - 0.2186 -0.21861

0.2500 - 0.2500 -0.2496747212 - 0.2496750 - 0.2497 -0.24968

0.2812 - 0.2812 -0.2806795005 - 0.2806800 - 0.2807 -0.28068

0.3125 - 0.3125 -0.3117064248 - 0.3117060 - 0.3117 -0.31171

As suggested in Eqs. (11)-(14) when m = 6 and k = 2, yields

u0(x) = u(0) +L−1
6∑

i=0

(
6
i

)
xi(1 − x)6−i f

( i
6

)

−

3∑
a=2

(
da

dxa

)
Bi,6(x)

a!6a T6,a(x)

= 1 + x(1 − x)5 + 5x2(1 − x)4 + 10x3(1 − x)3

+ 10x4(1 − x)2 + 5x5(1 − x) + x6

= 1 + x,

u1(x) =
∫ x

0

∫ x

0
A0dtdx

=

∫ x

0

∫ x

0
e−tu2

0(t)dtdx

= −11 + x2e−x + 6xe−x + 11e−x + 5x,

u2(x) =
∫ x

0

∫ x

0
A1dtdx

=

∫ x

0

∫ x

0
2e−tu0(t)u1(t)dtdx

=
−139

4
+

39
4

x + 14e−x + 5e−2xx2 +
71
4

e−2xx

+
83
4

e−2x + 28xe−x +
1
2

x3e−2x + 10x2e−x,

u3(x) =
∫ x

0

∫ x

0
A2dtdx

=
1

972
(15267xe3x + 43254x2e2x + 7290x3ex

+ 216x4 − 676073 + 17496xe2x + 49572x2ex

+ 3060x3 − 1458e2x + 103275xex + 17010x2

+ 26487ex + 43212x + 42578)e−3x,

u4(x) =
∫ x

0

∫ x

0
A3dtdx

=
1

248832
(5536734xe4x + 32077824x2e3x

+ 12970368x3e2x + 1105920x4ex + 22464x5

− 28049407e4x − 38330368xe3x + 53374464x2e2x

+ 12128256x3ex + 409824x4 + 14800896e3x

+ 47138112xe2x + 49489920x2ex + 3090096x3

− 46453824e2x + 81899520xex + 11923584x2

+ 41003008ex + 23455582x + 18699327)e−4x,

and so on. Therefore, the solution of Eq. (19) is expressed as

um(x) =
m∑

j=0

ui

= u0(x) + u1(x) + u2(x) + . . .

= 1 + x − 11 + x2e
−x
+ 6xe−x + 11e−x + 5x + . . . . (20)

This converges to the exact solution, u(x) = ex. Table 2 and
Figures 3 and 4 present a numerical comparison between our
solution, u4(x) and the exact solution for Example 2.

Example 3. Consider the following nonlinear integro-differential
equation:

du
dx
=

3
2

ex −
1
2

e−3x +

∫ x

0
ex−tu3(t)dt, u(0) = 1. (21)

Applying the Adomian polynomial and L−1 to both sides,
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Table 2. Numerical comparison between our solution u4(x) and the
exact solution for Example 2

xxx Exact u4(x)u4(x)u4(x) Absolute error

0 1.000000000 1.000000000 0.00000000000

0.1 1.105170918 1.105170947 2.748263881 e−8

0.2 1.221402758 1.221402795 3.470977888 e−8

0.3 1.349858808 1.349858866 5.617735570 e−8

0.4 1.491824698 1.491824726 2.548139800 e−8

0.5 1.648721271 1.648721069 2.030066670 e−7

0.6 1.822118800 1.822117695 1.105495050 e−6

0.7 2.013752707 2.013747690 5.019781840 e−6

0.8 2.225540928 2.225522980 1.795120140 e−5

0.9 2.459603111 2.459549162 5.394816930 e−5

1.0 2.718281828 2.718138102 1.437281820 e−4

Figure 3. Numerical comparison between our solution u4(x) and
exact solution for Example 2.

we have

∞∑
j=0

u j(x) = u(0) +L−1

3
2

ex −
1
2

e−3x +

∫ x

0

∞∑
n=0

An(t)dt

 .
This formula gives the following series solution:

um(x) =
m∑

j=0

ui = u0(x) + u1(x) + u2(x) + . . .

= 1 + x +
x2

2
+

x3

3!
+

x4

4!
+

x5

5!
+ . . . . (22)

This converges to the exact solution, u(x) = ex. Table 3 and
Figure 5 present a numerical comparison between the proposed
solution and the exact solution for Example 3.

Figure 4. Absolute error for Example 2.

Table 3. Numerical comparison between our solution and the exact
solution for Example 3

xxx Exact uApp(x)uApp(x)uApp(x) Absolute error

0 1.000000000 1.000000000 0.00000000000

0.1 1.105170918 1.105170917 1.33329967 e−9

0.2 1.221402758 1.221402667 9.1333663 e−8

0.3 1.349858808 1.349857750 1.05800000 e−6

0.4 1.491824698 1.491818667 6.03132967 e−6

0.5 1.648721271 1.648697917 2.33543363 e−5

0.6 1.822118800 1.822048000 7.08000000 e−5

0.7 2.013752707 2.013571417 1.81290327 e−4

0.8 2.225540928 2.225130667 4.10261323 e−4

0.9 2.459603111 2.458758250 8.44861000 e−4

1.0 2.718281828 2.716666667 1.615161297 e−3

6. Conclusion

We constructed an ADM based on modified Bernstein poly-
nomials to solve the nonlinear first-order integro-differential
equations. The performance of this method was validated by
comparing the exact and approximate solutions for some exam-
ples. The results confirmed that this hybrid method can compete
with other efficient methods for solving these types of equations.
This method did not require any diminutive presumptions to
solve the nonlinear integro-differential equations and produced
an extremely effective strategy among the alternate strategies.
This hybrid method is suitable for solving nonlinear problems.
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Figure 5. Numerical comparison between our solution and the exact
solution for Example 3.
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