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Abstract

In this study, the fuzzy prime ideal theorem is established by adopting an unusual technique
of quasi-coincident (overlapping) fuzzy sets. Subsequently, the intriguing applications of the
fuzzy prime ideal theorem verify its substantial importance in fuzzy algebra. Every proper
fuzzy ideal in a distributive lattice L is the intersection of the fuzzy prime ideals of L. The
author also proved that the existence of a fuzzy prime ideal in a sublattice of L ensures the
existence of a fuzzy prime ideal in L. Moreover, the classical prime ideal theorem for lattices
is a corollary of the fuzzy prime ideal theorem.
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1. Introduction

In 1971, Rosenfeld [1] applied the notion of fuzzy sets to algebra and formulated the concepts
of the fuzzy subgroupoid and fuzzy subgroups of a group in his seminal paper. In 1981, Wu
[2] defined the notion of a normal fuzzy subgroup and studied the related concepts. Liu [3]
conducted this study and defined the concept of a fuzzy subring. Subsequently, researchers
worldwide have applied the notion of fuzzy sets to their respective fields to define various
fuzzy algebraic concepts [4–8]. Researchers have also explored the theory of L fuzzy sets
introduced by Goguen [9]. Yuan and Wu [10] applied the notion of fuzzy sets to lattice theory
and initiated the study of fuzzy lattices by defining the concepts of fuzzy sublattice and fuzzy
ideals in a lattice.

The fuzzy lattice theory was systematically developed by Ajmal and Thomas [11]. They
introduced concepts such as fuzzy dual ideals, fuzzy convex sublattices, fuzzy sublattices,
and fuzzy ideals (dual ideals) generated by a fuzzy set. The unique representation theorem
for convex sublattices was extended to fuzzy settings [11]. In [12, 13], the authors studied
fuzzy congruences and fuzzy ideals in a lattice and introduced operations for fuzzy sets in
a lattice. They also prove that a lattice is distributive iff the lattice of its fuzzy ideals (dual
ideals) is distributive. The notions of the fuzzy prime ideal and fuzzy dual-prime ideal were
also introduced and studied. by Ajmal and Thomas [11–13], Thereafter, several researchers
continued to work in fuzzy lattices [14, 15].

The prime ideal theorem is one of the most important results of this theory for the distribu-
tive lattices [16]. In lattice theory, the prime ideal theorem for distributive lattices is equivalent
to the maximal ideal theorem for Boolean algebra. The equivalence of the existence of a
maximal ideal in a distributive lattice with 1 to the axiom of choice is established, however,
the prime ideal theorem for distributive lattices does not share this equivalence. The axiom of
choice implies the prime ideal theorem but not vice versa.
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In this study, we established a fuzzy prime ideal theorem.
In [17, 18], the authors have proposed a fuzzy version of this
well-known prime ideal theorem from classical lattice theory. In
[18], the proof of the fuzzy prime ideal theorem heavily relied
on the classical prime ideal theorem of the lattice theory (based
on Stone). In fact, in [18], the authors at each level “α”, have
used the prime ideal theorem (where α is arbitrary but fixed in
[0, 1]) to establish their result. However, in this study, we have
formulated the fuzzy version of the prime ideal theorem such
that, in its proof, we use Zorn’s lemma only. The classical prime
ideal theorem follows as a simple corollary of our results. In
addition, in the proof of the fuzzy prime ideal theorem in [18],
the fact that the subsets I = µα and J = να are ideal and filtered,
respectively, does not follow from their work, as these are not
α-level subsets, but strong level subsets. However, their claim
is valid, and the proof of the result remains correct. This was a
significant attempt in this direction. The authors of [17, 18] did
not show that the classical version follows the fuzzy prime ideal
theorem. Considering the above discussion, our fuzzy prime
ideal theorem is stronger than the classical prime ideal theorem.
However, the fuzzy prime ideal theorem in [18] is equivalent to
the classical prime ideal theorem.

In this study, we state and establish the fuzzy prime ideal the-
orem and prove related results that authenticate the fact that the
fuzzy prime ideal theorem can be further used to advance the
theory of fuzzy lattices. The prime ideal theorem in classical lat-
tice algebra follows a simple corollary of this fuzzy version. In
this study, the fuzzy prime ideal theorem was obtained by adopt-
ing an unusual and unique technique of quasi-coincident (over-
lapping) fuzzy sets and disquasi-coincident (non-overlapping)
fuzzy sets. These notions were first employed by Pu and Liu
[19] in their pioneering study on fuzzy topologies. In two quasi-
coincident fuzzy sets, they replaced one of the fuzzy sets by a
fuzzy point and thus defined a relationship of quasi-coincidence
between a fuzzy point and a fuzzy set and this replaced the
notion of “belonging to” in classical set theory. This was in-
strumental in the formation of a quasi-neighborhood system, in
which laid the foundation for the successful development of the
fuzzy topological space theory. In [20], the authors used this
concept and introduced the notion of overlapping families of
fuzzy sets and the order of a family of fuzzy sets.

2. Preliminaries

In this section, we present a few basic definitions and results that
were subsequently used. A fuzzy set µ in set S is defined as the

mapping from S to closed interval [0, 1]. If µ and η are fuzzy
sets in S, then µ is said to be contained in η if µ(x) ≤ η(x) ∀
x ∈ S, denoted by µ ⊆ η. The arbitrary union

⋃
i∈I(µi) and

intersection
⋂
i∈I(µi) of a family of fuzzy sets (µi)i∈I in set S

are defined as fuzzy sets in S given by(⋃
µi

)
(x) = sup{µi(x) : i ∈ I},

and (⋂
µi

)
(x) = inf{µi(x) : i ∈ I}.

Throughout this study, L denotes a lattice, and F(L) denotes
the set of all fuzzy sets in L. If µ ∈ F(L), the complement of µ,
denoted by µ′ is a fuzzy set in L defined by µ′(x) = 1− µ(x)

∀ x ∈ L.

The notions of level and strong level subsets are crucial in
establishing numerous results and characterizations of fuzzy
algebraic structures. If µ is a fuzzy set in set S, then for t ∈
[0, 1], a level subset µt and strong level subset µ>t are defined
as

µt = {x ∈ S/µ(x) ≥ t},

µ>i = {x ∈ S/µ(x) > t},

respectively. Yuan and Wu [10] introduced the notion of a fuzzy
sublattice in a lattice as follows:

Definition 2.1 [10]. A fuzzy set µ in L is called a fuzzy
sublattice of L if

µ(x+ y) ≥ min{µ(x), µ(y)} < and

µ(xy) ≥ min{µ(x), µ(y)} ∀ x, y ∈ L.

Let L(L) denote a set of fuzzy sublattices of L. It is well-
known that an arbitrary intersection of fuzzy sublattices is a
fuzzy sublattice. A fuzzy sublattice of L generated by a fuzzy
set µ is defined as the smallest fuzzy sublattice of L containing
µ and is denoted by [µ]. Clearly,

[µ] =
⋂
{η ∈ L(L)/µ ⊆ η}.

The symbol [A] denotes the sublattice generated by a subset A
ofL.

Theorem 2.2 [11]. Let µ ∈ F(L), Subsequently, µ is a
fuzzy sublattice of L iff each level subset µt for t ∈ Imµ is a
sublattice of L.

Equivalently, a fuzzy set µ in L is a fuzzy sublattice of L iff
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each nonempty level subset µt is a sublattice of L.

The definitions of a fuzzy ideal (dual ideal) and fuzzy prime
ideal (dual ideal) in a lattice L are given by Ajmal and Kohli
[20].

Definition 2.3 [11]. A fuzzy sublattice µ of a lattice L is
called

(i) A fuzzy ideal of L if x ≤ y in L implies µ(x) ≥ µ(y);

(ii) A fuzzy dual ideal of L if x ≤ y in L implies µ(x) ≤
µ(y).

Let I(L) and D(L) denote the sets of the fuzzy and fuzzy dual
ideals of L, respectively. The fuzzy ideal (θ] generated by a
fuzzy set θ is defined as the smallest fuzzy ideal L that contains
θ. Similarly, the fuzzy dual ideal [γ) generated by the fuzzy set
γ is defined as the smallest fuzzy dual ideal of L containing γ.
Because the set of all fuzzy ideals (dual ideals) of L is closed
at arbitrary intersections,

(θ] =
⋂
{η ∈ I(L)/θ ⊆ η},

[γ) =
⋂
{η ∈ D(L)/γ ⊆ η}.

The same symbols (A] and [A) denote an ideal and a dual ideal
generated by subset A of L, respectively.

Theorem 2.4 [11]. Let µ ∈ L(L). Then, µ is the fuzzy ideal
(fuzzy dual ideal) of L if and only if each level subset µt for
t ∈ Imµ is an ideal (dual ideal) of L.

Equivalently, a fuzzy sublattice µ in L is a fuzzy ideal (dual
ideal) of L if and only if each nonempty level subset µt is an
ideal (dual ideal) of L.

If µ is the fuzzy ideal (fuzzy dual ideal) of L, then the ideal
(dual ideal) µt is the level ideal (dual ideal) of L.

Theorem 2.5 [11]. (i) A fuzzy ideal µ of L is called a
fuzzy prime ideal if

µ(xy) ≤ max{µ(x), µ(y)} ∀ x, y ∈ L;

(ii) A fuzzy dual ideal µ of L is called a fuzzy prime dual
ideal if

µ(x+ y) ≤ max{µ(x), µ(y)} ∀ x, y ∈ L.

Let FP(L) and FDP(L) denote the sets of all the fuzzy prime
ideals and fuzzy prime dual ideals of L, respectively.

Theorem 2.6 [11]. Let µ ∈ I(L) (µ ∈ D(L)). µ is a fuzzy
prime ideal (fuzzy prime dual ideal) of L if and only if each

level ideal (dual ideal) µt for t ∈ Imµ is the prime ideal (dual
prime ideal) of L.

Equivalently, a fuzzy ideal (dual ideal) µ is a fuzzy prime
ideal (fuzzy prime dual ideal) of L if and only if each nonempty-
level ideal µt is a prime ideal (dual prime ideal) of L.

Wong’s introduction of fuzzy points significantly advanced
the field of fuzzy topologies, enabling numerous findings on
countability, separability, compactness, and convergence using
this concept. Mordeson et al. [8] defined the concept of a fuzzy
coset in a fuzzy group using fuzzy point.

Definition 2.7. For any x ∈ X , a fuzzy point xα in set X is
a fuzzy set given by

xα(a) =

{
α, if a = x,

0, otherwise,

}

where 0 < α < 1. The fuzzy point xα is said to have support x
and a value α.

For a distributive lattice L, let P be a set of fuzzy points in L.
That is,

P = {xα/0 < α < 1, x ∈ L}.

Define a relation “≤” in P as: xα ≤ yβ if and only if x ≤ y in
L and α ≤ β in (0, 1). It can be verified that P is a Poset with
respect to this relation.

3. Some Characterizations

In this section, we describe certain characterizations of the
fuzzy ideal and fuzzy dual ideal of a lattice. For these char-
acterizations, we use the concept of a strong-level subset of a
fuzzy set. Strong-level subsets first appeared in [21], where the
modularity of the lattice of the fuzzy normal subgroups of a
group was established. The notion of strong-level subsets effec-
tively replaces the notion of level subsets in fuzzy group theory
studies. The application of strong-level subsets simplifies the
proofs of results considerably and often removes the need for
the sup property restriction. Head [22, 23], who establishing
his well-known Metatheorem, defined the Rep function using
strong level subsets.

Theorem 3.1. We assume that µ ∈ L(L). Subsequently, the
following are equivalent:

(i) µ is a fuzzy ideal (dual ideal) of L.

(ii) Each strong level subset µ>t , for t < supµ, is an ideal
(dual ideal) of L.
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(iii) Each nonempty strong-level subset µ>t , is an ideal (dual
ideal) of L.

Proof. (i)⇒(ii): Let t < supµ and x, y ∈ µ>t . Subsequently,
µ(x) > t and µ(y) > t. As µ is a fuzzy sublattice,

µ(x+ y) ≥ min{µ(x), µ(y)} > t,

µ(xy) ≥ min{µ(x), µ(y)} > t.

Hence x + y, xy ∈ µ>t . Thus µ>t is a sublattice of L. Next,
let x ∈ µ>t and y ≤ x be L. As µ is the fuzzy ideal of L,
µ(x) ≤ µ(y). We thus get µ(y) ≥ µ(x) > t. Thus, y ∈ µ>t .
Consequently, µ>t is the ideal value of L.

(ii)⇒(iii): Let µ>t be a nonempty strong-level subset of µ.
Suppose z ∈ µ>t . Subsequently,

t < µ(z) ≤ supµ.

Therefore, from (ii), µ>t is ideal for L.

(iii)⇒(i): First, we assume that ∃ x, y ∈ L such that µ(x+

y) < min{µ(x), µ(y)}. Subsequently, by setting µ(x+y) = t,
we obtain

min{µ(x), µ(y)} > t.

This implies µ(x) > t and µ(y) > t. Thus, x, y ∈ µ>t . As µ>t
is a sublattice of L,

x+ y ∈ µ>i .

This result contradicts that µ(x+ y) = t. We thus have,

µ(x+ y) ≥ min{µ(x), µ(y)} ∀ x, y ∈ L.

Similarly,

µ(xy) ≥ min{µ(x), µ(y)} ∀ x, y ∈ L.

In contrast, suppose ∃ x, y ∈ L such that x ≤ y and µ(x) <

µ(y). We set µ(x) = t. Subsequently,

y ∈ µ>i but x /∈ µ.t

This is a contradiction, because µ>t , being nonempty, is an ideal
of L. Therefore, µ is the fuzzy ideal of L. This completes the
proof.

The proof for the dual ideal is similar; hence, it is omitted.

The next theorem comes as a consequence of Theorem 3.4 and

Theorem 4.1.

Theorem 3.2. We assume that µ ∈ L(L). Subsequently, the
following are equivalent:

(i) µ is a fuzzy ideal (fuzzy dual ideal) of L.

(ii) Each level subset µt, for t ∈ Imµ, is an ideal (dual ideal)
of L.

(iii) Each nonempty level subset µt is an ideal (dual ideal) of
L.

(iv) Each strong level subset µ>t , for t < supµ, is an ideal
(dual ideal) of L.

(v) Each nonempty strong-level subset µ>t is an ideal (dual
ideal) of L.

The following result provides a simple characterization of
the fuzzy prime ideal of L. The proof is straightforward; hence,
it is omitted here.

Theorem 3.3. Let µ be a fuzzy ideal of L. Subsequently, µ
is the fuzzy prime ideal iff

µ(xy) = µ(x) or µ(y) ∀ x, y ∈ L.

The next theorem provides the equivalent conditions for µ to
become the fuzzy prime ideal (dual ideal) of L. The proof that
is similar to Theorem 4.1 is omitted.

Theorem 3.4. Let µ ∈ I(L) {µ ∈ D(L)}. Subsequently,
the following are equivalent:

(i) µ is a fuzzy prime ideal (prime dual ideal) of L.

(ii) Each level ideal µt, for t ∈ Imµ, is a prime ideal (dual
ideal) of L.

(iii) Each nonempty level ideal µt is a prime ideal (dual ideal)
of L.

(iv) Each strong-level subet µ>t , for t < supµ, is a prime
ideal (dual ideal) of L.

(v) Each nonempty strong-level subset µ>t is a prime ideal
(dual ideal) of L.

The above characterizations help establish that the union of an
ascending chain of fuzzy ideals in a lattice is a fuzzy ideal. The
same applies for the dual fuzzy ideals of L. For this purpose, we
provide a more general result regarding the union of a directed
family of fuzzy ideals in a lattice.
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Theorem 3.5. Let {µt}t∈A be a family of fuzzy ideals in
lattice L directed under fuzzy-set inclusion. Then, the union⋃
t∈Λ µt is a fuzzy ideal of L.

Proof. In view of Theorem 3.2, it is enough to prove that
each nonempty strong-level subset

(⋃
i∈Λ µi

)>
t

of the fuzzy
set
⋃
r∈Λ µr is an ideal of L. We know that,(⋃

i∈Λ

µi

)>
t

=
⋃
i∈Λ

(µi)
>
t ∀ t ∈ [0, 1].

Let x, y ∈
⋃
i∈Λ(µi)

>
t for some t ∈ [0, 1]. Then,

x ∈ (µi0)>t and y ∈ (µj0)>t for some i0andj0 ∈ Λ.

Because {µt}t∈A is a directed family of fuzzy ideals, ∃ k ∈ Λ

such that
µi0 ⊆ µk and µj0 ⊆ µk.

We have

µk(x) ≥ µi0(x) > t, µk(y) ≥ µj0(y) > t.

As µk is a fuzzy sublattice, this implies that

µk(x+ y) > t and µk(xy) > t.

Thus
x+ y, xy ∈ (µk)>t ⊆

⋃
i∈Λ

(µi)
>
t .

Thus,
⋃
i∈Λ(µi)

>
t . Hence,

(⋃
i∈Λ µi

)>
t

is a sublattice of L.
Further, let

x ≤ y and y ∈
⋃
i∈Λ

(µi)
>
t .

Subsequently, y ∈ (µp)
>
t for some p ∈ Λ. As µp is a fuzzy

ideal, (µp)
>
t is an ideal of L. Hence,

x ∈ (µp)
>
t ⊆

⋃
i∈Λ

(µi)
>
t .

Thus,
⋃
i∈Λ(µi)

>
t and

(⋃
i∈Λ µi

)>
t

is ideal for L. Hence, the
union

⋃
r∈Λ µr of a directed family of fuzzy ideals is the fuzzy

ideal in L.

The following is an immediate corollary:

Corollary 3.6. The union of an ascending chain of fuzzy
ideals in L is a fuzzy ideal.

4. Fuzzy Sublattice (Ideal, Dual Ideal) Gener-
ated by a Fuzzy Set

In this section, some interesting techniques for generating fuzzy
sublattice, fuzzy ideals, and fuzzy dual ideals are provided using
the concepts of level and strong-level subsets.

Theorem 4.1 [6]. Let µ ∈ F(L). We define the fuzzy sets
µ∗ and µ∗∗ in L as

µ∗(x) = sup
t∈Imµ

{t : x ∈ [µt]},

and
µ∗∗(x) = sup

t<supµ
{t : x ∈ [µ>t ]} ∀ x ∈ L.

Then µ∗ = µ∗∗ = [µ].

Thus, the fuzzy sublattice generated by µ can either be defined
using the classical sublattice generated by the level subsets of µ
or by the sublattice in L generated by the strong level subsets of
µ. We provide the proof of the next result for similar generating
methods for fuzzy ideals in L.

Theorem 4.2. Let θ ∈ F(L). We define the fuzzy sets θ∗

and θ∗∗ in L as

θ∗(x) = sup
t∈Im θ

{t : x ∈ (θt]},

and
θ∗∗(x) = sup

t<sup θ
{t : x ∈ (θ>t ]} ∀ x ∈ L.

Subsequently, θ∗ = θ∗∗ = (θ].

Proof. We first prove that θ∗∗ is a fuzzy ideal of L. Let x,
y ∈ L such that

θ∗∗(x+ y) < min{θ∗∗(x), θ∗∗(y)}.

Then, θ∗∗(x+y) < θ∗∗(x) and θ∗∗(x+y) < θ∗∗(y). Therefore,
∃ to < sup θ and so < sup θ such that x ∈ (θ>to ], y ∈ (θ>so ] and

θ∗∗(x+ y) < to, θ∗∗(x+ y) < so.

If to = so, then x, y ∈ (θ>to ]. This implies x + y ∈ (θ>to ] as
(θ>to ] is ideal for L generated by θ>to . Therefore,

to ≤ sup
t<sup θ

{t : x+ y ∈ (θ>t ]} = θ∗∗(x+ y).

This contradicts that θ∗∗(x+ y) < to.
If to < so, θ>s0 ⊆ θ>t0 . Thus, x, y ∈ (θ>to ]. This implies
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x + y ∈ (θ>to ] and, consequently, to ≤ sup
t<sup θ

{t : x + y ∈

(θ>t ]} = θ∗∗(x+ y). However, this finding is contradictory.

Thus,

θ∗∗(x+ y) ≥ min{θ∗∗(x), θ∗∗(y)} ∀ x, y ∈ L.

Let x ≤ y be in L. Because (θ>t ] is the fuzzy ideal of L,
y ∈ (θ>t ] implies x ∈ (θ>t ]. That is

sup
t<sup θ

{t : y ∈ (θ>t ]} ≤ sup
t<sup θ

{t : x ∈ (θ>t ]}.

Thus,
θ∗∗(y) ≤ θ∗∗(x).

Therefore, θ∗∗ is the fuzzy ideal of L.

Now, we prove that θ ⊆ θ∗∗. Suppose that θ(x) > θ∗∗(x)

for x ∈ L. Choose a real number to ∈ [0, 1], such that

θ(x) > t0 > θ∗∗(x).

Subsequently, x ∈ θ>to ⊆ (θ>to ]. This implies

to ≤ sup
t<sup θ

{t : x ∈ (θ>t ]} = θ∗∗(x),

This contradicts θ∗∗(x) < to. Thus,

θ ⊆ θ∗∗.

Next, we establish that θ∗∗ is the least fuzzy ideal of L con-
taining θ. Suppose that η is a fuzzy ideal of L such that θ ⊆ η.
Suppose that ∃ x ∈ L such that

θ∗∗(x) > η(x).

Let s be a real number, such that

θ∗∗(x) > s > η(x).

Thus, η(x) < s implies that x /∈ η>s . Moreover, s < θ∗∗(x)

implies that ∃ to < sup θ such that x ∈ (θ>to ] and s < to. Since
θ ⊆ η and η is a fuzzy ideal of L, therefore by Theorem 4.2 we
get

x ∈ (θ>to ] ⊆ (η>to ] = η>to .

Further, s < to implies x ∈ η>to ⊆ η
>
s . This finding contradicts

x /∈ η>s . Hence,

θ∗∗(x) ≤ η(x) ∀ x ∈ L.

That is, θ∗∗ is the least fuzzy ideal of L containing θ. Thus,

θ∗∗ = (θ].

We now establish θ∗ = θ∗∗.

Let x ∈ L. To prove that θ∗∗(x) ≤ θ∗(x), let t < sup θ such
that x ∈ (θ>t ]. We claim that ∃ to ∈ Im θ such that t ≤ to and
x ∈ (θto ]. Consider two cases:

If t ∈ Im θ, then:

x ∈ (θ>t ] ⊆ (θt].

If t /∈ Im θ, then: Then, because t < sup θ, ∃ s ∈ Im θ such
that

t < s ≤ sup θ and θ>t = θs.

Thus x ∈ (θ>t ] = (θs].

Consequently, for each t ∈ {t < sup θ/x ∈ (θ>t ]}, ∃ to ∈
{t ∈ Im θ/x ∈ (θt]} such that t ≤ to. Therefore,

sup
t<sup θ

{t/x ∈ (θ>t ]} ≤ sup
t∈Im θ

{t/x ∈ (θt]}.

That is,
θ∗∗(x) ≤ θ∗(x) ∀ x ∈ L.

Suppose θ∗∗(x) < θ∗(x) for x ∈ L. Then by the definition of
θ∗(x), ∃ to ∈ Im θ, x ∈ (θto ] such that

θ∗∗(x) < to.

Because θ∗∗(x) is the intersection of all the fuzzy ideals of
L containing θ, ∃ a fuzzy ideal η of L such that θ ⊆ η and
η(x) < to. Currently, θ ⊆ η implies that:

θto ⊆ ηto .

Therefore,
x ∈ (θto ] ⊆ ηto .

where η denotes the fuzzy ideal of L. This implies

η(x) ≥ to.

However, this finding is contradictory. Hence,

θ∗∗(x) ≥ θ∗(x) ∀ x ∈ L.

Thus,
θ∗∗ = θ∗.
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This completes the proof.

The following results provide similar techniques for generating
a fuzzy dual ideal using a fuzzy set in L.

Theorem 4.3. Let γ ∈ F(L), we define the fuzzy sets γ∗

and γ∗∗ in L as

γ∗(x) = sup
t∈Im γ

{t : x ∈ [γt)},

and
γ∗∗(x) = sup

t<sup γ
{t : x ∈ [γ>t )} ∀ x ∈ L.

Then γ∗ = γ∗∗ = [γ).

5. Fuzzy Prime Ideal Theorem

The notion of fuzzy point and quasi-coincident (overlapping)
fuzzy sets is crucial in the studies of fuzzy topological spaces.
The idea of disquasi-coincident fuzzy sets emerged from the set
theory that two subsets of a set are disjoint (non-intersecting)
iff one is contained in the complement of the other. However,
in fuzzy set theory, the implication is not in either way. In other
words, a fuzzy set contained in the complement of another
fuzzy set may or may not be disjointed from it. This implies
the notion of disquasi-coincident is more general than that of
disjoint fuzzy sets. Pu and Liu [19] replaced the notion of
disjointness with disquasi-coincident in their studies and thus
developed the theory of fuzzy topology.

In fuzzy group theory and all other branches of fuzzy alge-
braic structures, the concept of a fuzzy point is rarely utilized,
with a few exceptions. This contrasts with classical group the-
ory, in which a point and its related notions of belonging are an
integral part of the subject’s development. In the fuzzy group
theory, one of the few places where the notion of a fuzzy point
is applied is forming fuzzy cosets [8] and the other place is
in [24], where a pointwise characterization of the normality
of an L-subgroup in an L-group is provided. A fuzzy point
is a fuzzy set that assumes a non-zero value only at a single
point, which is called the support of that fuzzy point. Here, we
use the concepts of a fuzzy point and overlapping fuzzy sets
to establish an important result. For a fuzzy set µ in a set X
properly containing another fuzzy set η, there exist infinitely
many fuzzy points xa that do not overlap with η and overlap
with µ. That is xα 6q η and xα q µ.

In this section, we establish the fuzzy prime ideal theorem
using Zorn’s lemma. First, we define overlapping and non-

overlapping fuzzy sets. Here, the fuzzy set 1X in set X is
defined as a constant fuzzy set with all truth values 1 in L.

Definition 5.1 [19]. Let µ and η be fuzzy sets in a set X . µ
and η are said to be quasi-coincident (or overlapping) if there
exists x in X such that

µ(x) + η(x) > 1.

This is denoted by
µ q η.

In contrast, µ and η are said to be disquasi-coincident (non-
overlapping) fuzzy sets if, for all x in X ,

µ(x) + η(x) ≤ 1.

This is expressed as µ+ η ≤ 1X or µ 6q η.

If µ is replaced by a fuzzy point xα, then xα is quasi-coincident
with η if for some x in X , α+ η(x) > 1. This is expressed as
xα q η,

In the prime ideal theorem of lattice theory, the ideal and
dual ideals of the lattice are considered to be disjoint. However,
to obtain the fuzzy version of this theorem, in the hypothesis,
we replace the concept of the disjoint fuzzy ideal and fuzzy
dual ideal by the disquasi-coincident (non-overlapping) fuzzy
ideal and fuzzy dual ideal. To fix the notation in the following
theorem, the symbol 〈θto , x〉 is the ideal L generated by θto ∪
{x}.

Theorem 5.2. Let L be a distributive lattice, µ be a fuzzy
ideal in L and η be a fuzzy dual ideal in L such that µ+ η ≤
1L(µ 6q η). Subsequently, there exists a fuzzy prime ideal θ in
L such that µ ⊆ θ and θ + η ≤ 1L(θ 6q η).

Proof. Let FI(µ, η) be the family (Poset) of all fuzzy ideals of
L containing µ and non-overlapping with η. That is,

FI(µ, η) = {α : α ∈ I(L), µ ⊆ α and α 6q η}.

Let Ω = {αi} be a chain in FI(µ, η) and

α =
⋃

Ω =
⋃
i

αi.

According to Theorem 3.6, α is the fuzzy ideal of L. Clearly,
µ ⊆ α, α and η are nonoverlapping (α 6q η). Therefore,

α = ∪Ω ∈ FI(µ, η).
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FI(µ, η) is a poset in which each chain has an upper bound.
From Zorn’s lemma, FI(µ, η) has a maximal element θ. Sub-
sequently, θ is the fuzzy ideal of L, µ ⊆ θ and θ 6q η. We prove
that θ is the fuzzy prime ideal of L. By contrast, suppose θ is
not a fuzzy prime ideal of L. Subsequently, from Theorem 4.3,
∃ x, y ∈ L such that

θ(xy) > θ(x) and θ(xy) > θ(y).

If θ(xy) = to, then x /∈ θto , y /∈ θto and xy ∈ θto . Define
fuzzy set θ∗x as

θ∗x : L→ [0, 1],

θ∗x(a) =


θ(a), if a ∈ θto ,

to, if a ∈ 〈θto , x〉 ∼ θto ,

θ(a), if a ∈ L ∼ 〈θto , x〉.

Similarly, we define the fuzzy set θ∗y as

θ∗y : L→ [0, 1],

θ∗y(a) =


θ(a), if a ∈ θto ,

to, if a ∈ 〈θta , y〉 ∼ θto ,

θ(a), if a ∈ L ∼ 〈θto , y〉.

Since each level subset of θ∗x and θ∗y is an ideal of L, therefore
by Theorem 3.2, θ∗x, θ∗y are fuzzy ideals of L. Moreover,

θ(x) < to = θ∗x(x) and θ(y) < to = θ∗y(y).

Therefore,

µ ⊆ θ ⊂ θ∗x and µ ⊆ θ ⊂ θ∗y.

Currently, θ is maximal inFI(µ, η), we obtain θ∗x, θ∗y /∈ FI(µ, η).
Therefore, the fuzzy sets θ∗x and η overlap and the fuzzy sets θ∗y
and η overlap. That is,

θ∗x q η and θ∗y q η

Thus, ∃ u1, u2 ∈ L such that

θ∗x(u1) + η(u1) > 1 and θ∗y(u2) + η(u2) > 1.

Because θ 6q η, we have

θ∗x(u1) = t0 and θ∗y(u2) = t0.

That is,
u1 ∈ 〈θto , x〉 ∼ θto ,

and
u2 ∈ 〈θta , y〉 ∼ θto .

We have to + η(u1) > 1 and to + η(u2) > 1. That is,

η(u1) > 1− to = so, η(u2) > 1− to = so.

This implies u1, u2 ∈ η>so . As η is the fuzzy dual ideal of L,

η(u1u2) > so.

Because u1 ∈ 〈θto , x〉 ∼ θto and u2 ∈ 〈θto , y〉 ∼ θto ,

u1 ≤ v1 + x and u2 ≤ v2 + y for some v1andv2 ∈ θto .

Thus,
u1u2 ≤ v1v2 + v1y + v2x+ xy ∈ θto

because θto is ideal for L and xy ∈ θto . This gives u1u2 ∈ θto
and therefore, θ(u1u2) ≥ to. Finally,

θ(u1u2) + η(u1u2) > to + so = 1.

Therefore, θ and η are fuzzy sets that overlap with u1u2. That
is,

θ q η.

This result contradicts that θ 6q η. Thus, we conclude that θ is
the fuzzy prime ideal of L.

A fuzzy set µ in L is considered appropriate if µ 6= 1L; that
is, ∃ x ∈ L such that µ(x) < 1. The next result is an interesting
application of fuzzy prime ideal theorem.

Theorem 5.3. Every proper fuzzy ideal in a distributive lat-
tice L is the intersection of fuzzy prime ideals of L.

Proof. Let µ be a proper fuzzy ideal in distributive lattice L.
Let

T = {η/η ∈ FP(L) , such that µ ⊆ η}.

Then clearly,
µ ⊆

⋂
n∈T

η.

We assume that µ 6=
⋂
η∈T η. Then, ∃ x ∈ L such that

µ(x) <

( ⋂
η∈T

η

)
(x).
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Currently, we choose a fuzzy point xα that is non-overlapping
(disquasi-coincident) with µ and overlapping (quasi-coincident)
with

⋂
η∈T η. That is, we choose α such that

xα 6q µ and xαq

( ⋂
η∈T

η

)
. (∗)

This statement also implies the following:

α+ µ(x) ≤ 1 and α+

( ⋂
η∈T

η

)
(x) > 1.

This is possible if we choose α ∈ [0, 1] such that

µ(x) ≤ 1− α <
( ⋂
η∈T

η

)
(x).

We now consider the dual ideal [x) of L generated by x. Con-
struct a fuzzy set γ in L given by

γ(z) =

α, if z ∈ [x),

0, if z ∈ L ∼ [x).

γ is clearly a fuzzy dual ideal of L with level subsets [x) and
L (Theorem 2.4). To use the fuzzy prime ideal theorem, we
must demonstrate that γ does not overlap with the fuzzy ideal
µ. That is,

µ 6q γ.

Consider z ∈ L. Here, we consider two cases.

Case 1. z ∈ [x). Then, x ≤ z and γ(z) = α. As µ is the
fuzzy ideal of L,

µ(z) ≤ µ(x).

Thus, (µ+ γ)(z) = µ(z) + γ(z) ≤ µ(x) + α ≤ 1.

Case 2. z /∈ [x). Then

(µ+ γ)(z) = µ(z) + γ(z) = µ(z) + 0 ≤ 1.

Therefore, (µ+ γ)(z) ≤ 1 ∀ z ∈ L. Hence

µ+ γ ≤ 1L.

Therefore, according to the fuzzy prime ideal theorem, there
exists a fuzzy prime ideal θ of L such that µ ⊆ θ and θ 6 q γ.
That is, θ and γ are non-overlapping. Clearly, θ ∈ T , which
implies that ⋂

η∈T
η ⊆ θ. (∗∗)

Now,

(θ + γ)(x) = θ(x) + γ(x)

= θ(x) + α (as x ∈ [x))

≥
( ⋂
η∈T

η

)
(x) + α (by (∗∗))

> 1. (by (∗))

Therefore, θ overlaps with γ at x, contradicting the fact that θ
and γ are non-overlapping (θ 6q γ). Hence

µ =
⋂
n∈T

η.

Another application of the fuzzy prime ideal theorem is pre-
sented in the next result, where the existence of a fuzzy prime
ideal in a sublattice of L ensures the existence of a correspond-
ing fuzzy prime ideal in the lattice L.

Theorem 5.4. Let L be a distributive lattice and L′ be a
sublattice of L. If µ′ is a fuzzy set in L such that (µ′)L′ (µ′

restricted to L′) is the fuzzy prime ideal of L′, then there exists
a fuzzy prime ideal θ in L such that (θ)L′ = (µ′)L′ .

Proof. Let µ = (µ′]L be the fuzzy ideal in L generated by µ′.
Then, by Theorem 4.2,

µ(x) = sup
t∈Imµ′

{t/x ∈ (µ′t]},

where (µ′t] is the ideal in L generated by µ′t.
Let η = [1L ∼ µ′)L be the fuzzy dual ideal in L generated by
fuzzy set 1L ∼ µ′. Subsequently, by Theorem 4.3,

η = sup
t∈Im(1L∼µ′)

{t/x ∈ [(1L ∼ µ′)t)},

where [(1L ∼ µ′)t) is the dual ideal in L generated by fuzzy
set (1L ∼ µ′)t.
We first claim that µ and η are non-overlapping fuzzy sets. That
is, µ 6q η. Suppose on the contrary, µ q η. That is, ∃ x ∈ L such
that

µ(x) + η(x) > 1.

Subsequently, by defining µ, ∃ t1 ∈ Imµ′ such that x ∈ (µ′t1 ]

and
t1 > 1− η(x).

Similarly, from the definition of η, ∃ t2 ∈ Im(1L ∼ µ′) such
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that x ∈ [(1L ∼ µ′)t2) and t2 > 1− t1. Thus,

t1 + t2 > 1.

According to the definitions of ideal and dual ideals, ∃ u ∈
(1L ∼ µ′)t2 and v ∈ µ′t1 such that

u ≤ x ≤ v.

Here, u ≤ v and v ∈ µ′t1 are ideal for L′. Thus, u ∈ µ′t1 , Thus,

µ′(u) ≥ t1 > 1− t2.

This implies
1 ∼ µ′(u) < t2.

This contradicts u ∈ (1L ∼ µ′)t2 . Thus, ∀ x ∈ L,

µ(x) + η(x) ≤ 1.

That is, µ 6q η.

Therefore, according to the fuzzy prime ideal theorem, there
exists a fuzzy prime ideal θ in L such that µ ⊆ θ, θ and η are
non-overlapping (that is, θ 6q η ). We shall prove that

(θ)L′ = (µ′)L′ .

Suppose there exists x ∈ L′ such that

µ′(x) > θ(x) ≥ µ(x).

Subsequently, ∃ as a fuzzy ideal α of L such that α(x) < µ′(x).
This contradicts the fact that µ′ ⊆ α. Thus,

µ′(x) ≤ θ(x) ∀ x ∈ L′.

Suppose µ′(x) < θ(x) for some x ∈ L′ ⊆ L. Consider

(θ + η)(x) = θ(x) + η(x)

> µ′(x) + η(x)

= µ′(x) + inf{β(x)/β ∈ D(L), 1L ∼ µ′ ⊆ β}

≥ µ′(x) + (1 ∼ µ′(x))

= 1.

This result contradicts that θ 6q η. Thus,

(θ)L′ = (µ′)L′ .

Hence the proof.

In the following theorem, we establish the important fact that
the classical prime ideal theorem easily follows the fuzzy prime
ideal theorem.

Theorem 5.5. Let L be a distributive lattice, I an ideal in L
and F a dual ideal in L such that I ∩ F = ∅. Subsequently, ∃
as a prime ideal J in L such that I ⊆ J and J ∩ F = ∅.

Proof. Let I be an ideal and F be a dual ideal in L such that
I∩F = ∅. Subsequently, by Theorem 3.1, χI (the characteristic
function of I) is a fuzzy ideal, and χF is a fuzzy dual ideal of
L. Suppose ∃ x ∈ L such that

(χI + χF )(x) > 1.

Subsequently, from the definitions of χI and χF , we have
χI(x) = χF (x) = 1. That is, x ∈ I ∩ F . This contradicts
because I ∩ F = ∅. Therefore, χI + χF ≤ 1L. Therefore,
using the fuzzy prime ideal theorem (Theorem 5.1), ∃ as a fuzzy
prime ideal θ of L such that χI ⊆ θ and θ + χF ≤ 1L. Let

J = Supp θ = {x ∈ L/θ(x) > 0} = θ>o .

Since θ is a fuzzy prime ideal of L, therefore, by Theorem 3.4,
θ>o , (i.e., Supp θ) is the primary ideal of L. As χI ⊆ θ, we
have I ⊆ Supp θ = J . Moreover, since θ+χF ≤ 1L, we have
Supp θ ∩ F = ∅. In other words, J ∩ F = ∅. This completes
the proof of the prime-ideal theorem.

6. Conclusion

The prime ideal theorem is crucial in the distributive lattice
theory. In this study, we provide a fuzzy prime ideal theorem
along with two of its applications, which are extensions of the
results from classical lattice theory.

Here, we obtain a fuzzy version of the prime ideal theorem
using Zorn’s lemma. Therefore, the axiom of choice implies a
fuzzy prime ideal theorem. As proved in Theorem 5.5, classical
prime ideal theorem follows from fuzzy prime ideal theorem.
Thus, the fuzzy prime ideal theorem lies strictly between the
axiom of choice and prime ideal theorem of the classical lattice.
If it is confirmed that the fuzzy version of the prime ideal
theorem is equivalent to the axiom of choice, this would mark a
significant milestone in the field.

The author also suggests the following for future work. First,
to develop the theory of fuzzy lattices, we suggest that the
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evaluation lattice, the interval [0, 1], be replaced with a more
general lattice L, that is, ordinary fuzzy sets should be replaced
by lattice-valued fuzzy sets (L-fuzzy sets), as introduced by
Goguen [9]. This will extend the work in this field beyond
the preview of the metatheorem introduced by Head [22, 23].
Second, researchers are working on fuzzy algebraic structures
that replace the parent algebraic structure with the fuzzy alge-
braic structure. This facilitates a more seamless extension of
concepts such as the maximal ideal in a lattice.
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