search for




 

A Note on Essential Soft Submodules
International Journal of Fuzzy Logic and Intelligent Systems 2019;19(1):10-17
Published online March 25, 2019
© 2019 Korean Institute of Intelligent Systems.

Bijan Davvaz, Jing Ma, and Chengxiz Sun

1Department of Mathematics, Yazd University, Iran, 2Department of Mathematics, Jilin University, Changchun China, 3United Experimental School of AHSJU and Livon, Changchun, China
Correspondence to: Jing Ma, (jma@jlu.edu.cn)
Received April 28, 2018; Revised December 17, 2018; Accepted March 18, 2019.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract

In this paper, we investigate the property of essential soft submodule and give an equivalent condition of essential soft submodule. Then the concept of the socle of a soft module is introduced, basic properties of such soft submodules are investigated, several equivalent definitions of the socle and the radical of a soft module are given respectively. Also, examples of these related soft submodules are given.

Keywords : Soft module, Essential soft submodule, Socle, Radical
1. Introduction

Many practical problems, in economics, engineering, environment, social science, medical science etc., with uncertainty as part of the data are not effectively dealt with by classical methods. Some of these difficulties is due to uncertainties and the inadequacy of the theories of parameterization tools. In 1999, Molodtsov [1] initiated the notion of soft sets as a general mathematical framework for dealing with uncertainty.

In 2003, Maji et al. [2] studied the operation on soft sets. In 2007, Aktas and Cagman [3] defined soft groups and compared soft sets with rough sets. In 2008, Feng et al. [4] introduced the notions of soft semirings and soft ideals, and then Acar et al. [5] introduced initial concepts of soft rings in 2010. In 2009, Irfan et al. [6] defined a new operation on soft sets.

In 2008, Sun et al. [7] defined soft modules and investigated their basic properties. In 2011, Atagun and Sezgin [8] studied soft substructures of rings and modules; Xiao [9] proved the isomorphism theorems of soft modules and studied the exact sequence of soft modules; Gunduz and Bayramov [10] introduced the concept of intuitionistic fuzzy soft module and some operations on intuitionistic fuzzy soft modules. In 2012, Yin et al. [11] discussed the operation properties and algebraic structure of intuitionistic fuzzy soft sets. In 2013, Xiang [12] studied soft modules; Ozturk et al. [13] investigated the inverse and direct systems of soft modules; Turkmen and Pancar [14] introduce the notions of sum and direct sum of soft submodules, small soft submodules and the radical of a soft module, and discussed the relation of the radical of a soft module with its small soft submodules and maximal soft submodules. In 2014, Shah and Medhit [15] investigated primary decomposition in a soft ring and a soft module. In 2018, Onar et al. [16] studied vague soft modules.

In 2017, Yucel and Acar [17] defined essential soft submodule and complement of a soft submodule, and obtained some basic properties of these soft submodules.

The main purpose of this paper is to introduce the concept of the socle of a soft submodule and another definition of essential soft submodules which is a little different from that given in [17], to investigate basic properties of essential soft submodule and the socle of a soft module, and to give several equivalent definitions of essential soft submodule, the socle and the radical of soft modules, respectively.

2. Preliminary

Definition 1 ([1])

Let U be an initial universe set, E be a set of parameters, P(U) be the power set of U and AE. An ordered pair (F,A) is called a soft set over U, where F is a set valued mapping given by

F:AP(U).

Definition 2 ([2])

Let (F,A) and (G,B) be soft sets over a common universe U. If BA and G(x) ⊆ F(x) for every xB, then we say that (G,B) is a soft subset of (F,A), denoted by (G,B)⊆̃(F,A).

Example 3

Let (F,A) be a soft set over U and BA. Then (F|B,B)⊆̃(F,A), where F|B is the restriction of F on B.

Definition 4 ([14])

Let (F,A) and (G,B) be soft sets over a common universe U, and AB ≠ Φ. The restricted intersection of (F,A) and (G,B) is denoted by (F,A) ⋒ (G,B), and is defined to be (F,A) ⋒ (G,B) = (H,AB), where H(x) = F(x) ∩ G(x) for all xAB.

Throughout this paper, R is an associative ring with identity and all modules are left R-modules, unless otherwise stated. Let M and N be R-modules. By NM, we mean that N is a submodule of M.

Now we introduce soft module.

Definition 5 ([7])

Let M be an R-module and (F,A) be a soft set over M. We say that (F,A) is a soft module over M if F(a) ≤ M for all aA.

Definition 6 ([7])

Let (F,A) and (G,B) be soft modules over M. (G,B) is said to be a soft submodule of (F,A), denoted by (G,B)≤̃(F,A), if BA and G(b) ≤ F(b) for all bB. If (G,B)≤̃(F,A) and (F,A)≤̃(G,B), then we say two soft modules (G,B) and (F,A) are soft equal and write (G,B) = (F,A).

Example 7

Let (F,A) be a soft module over M and BA. Then (F|B,B)≤̃(F,A), where F|B is the restriction of F on B.

Definition 8 ([8])

A soft module (F,A) over M is called whole if F(a) = M for every aA. A soft module (F,A) over M is called trivial if F(a) = 0, for every aA, denoted by (F,A) = 0.

Directly from this definition we see that every module M and set A give a whole soft module and a trivial soft module.

Now we define minimal soft submodule.

Definition 9

Let (G,B)≤̃(F,A) be soft modules over M. (G,B) is said to be a minimal soft submodule of (F,A), if G(b) is a minimal submodule of F(b) for all bB.

Example 10

Let n be a big integer and n=p1e1ptet be its prime decomposition with ei > 0. Take M = ℤn as a ℤ-module. Let A = ℤ, B = {n/pi | i = 1, …, t}, F(a) = ℤn for aA and G(b) = bn for bB. Then G(b) is a minimal submodule of F(b) for each bB, so that (G,B) is a minimal soft submodule of (F,A).

We use the following definitions of several special kind of soft submodules from the references.

Definition 11 ([14])

Let (G,B)≤̃(F,A) be soft modules over M. (G,B) is said to be a maximal soft submodule of (F,A), if G(b) is a maximal submodule of F(b) for all bB.

Example 12

Let n be a big integer and n=p1e1ptet be its prime decomposition with ei > 0. Take M = ℤn as a ℤ-module. Let A = ℤ, B = {pi | i = 1, …, t}, F(a) = ℤn for aA and G(b) = bn for bB. Then G(b) is a maximal submodule of F(b) for each bB, so that (G,B) is a maximal soft submodule of (F,A).

Definition 13 ([14])

Let (G,B)≤̃(F,A) be soft modules over M. (G,B) is said to be a small (superfluous) soft submodule of (F,A), if G(b) ≪ F(b) for all bB, denoted by (G,B) ≪̃ (F,A).

Definition 14 ([14])

Let (F,A) be a soft module over M, and {(Fi,Ai)}iI be a family of soft submodules of (F,A), where I is a nonempty set. The sum of the soft submodules {(Fi,Ai)}iI of (F,A) is defined to be

Σ˜iI(Fi,Ai)=(H,iIAi),

where H(a) = ∑iI(a)Fi(a), I(a) = {iI | aAi} for a ∈ ∪iIAi. Particularly, for soft submodules (F1,A1), …, (Fn,An) of (F,A), the sum of (F1,A1), …, (Fn,An) is denoted by (F1,A1)+̃ ··· +̃(Fn,An).

Lemma 15 ([14])

Let (F,A) be a soft module over M, and {(Fi,Ai)}iI be a family of soft submodules of (F,A). Then Σ̃iI (Fi,Ai) is a soft submodule of (F,A), and (Fi,Ai)≤̃Σ̃iI(Fi,Ai).

Proposition 16 ([14])

Let (G,B)≤̃(F,A) be soft modules over M. Then

(G,B)+˜(F,A)=(F,A).

Definition 17 ([7])

Let M and N be R-modules, (F,A) and (G,B) be soft modules over M and N respectively. The ordered pair (f, g) is called a soft homomorphism, in case f : MN is a homomorphism of modules, g : AB is a mapping, such that f(F(a)) = G(g(a)) for all aA. In this case, we write (f, g) : (F,A) → (G,B).

3. Essential Soft Submodules

Essential submodule plays an important role in module theory. Recall the definition of essential submodule. Let M be an R-module, K be a submodule of M. K is essential in M, in case KL ≠ 0 for every nontrivial submodule L of M, denoted by KM. For the basic properties of essential submodules see [1820]. In 2017, Yucel and Acar [17] introduced a definition of essential soft submodules and investigated the basic properties of essential soft submodules.

Definition 18 ([17])

Let (F,A) be a soft module over M. A nontrivial soft submodule (G,B) of (F,A) is called essential soft submodule in (F,A), denoted by (G,B)≤̃e(F,A), if (G,B) ⋒ (T,C) is nontrivial for every nontrivial submodule (T,C) of (F,A) such that BC ≠ ∅︀.

In this section, we give another definition of essential soft submodules, then give an equivalent condition of such defined essential submodules and study the property of essential submodule under soft homomorphism.

Definition 19

Let (F,A) be a soft module over M. A nontrivial soft submodule (G,B) of (F,A) is called essential soft submodule in (F,A), denoted by (G,B) ⊴̃ (F,A), if (G,B) ⋒ (T,C) is nontrivial for every nontrivial soft submodule of (F,A).

The following theorem provides an equivalent definition of essential soft module.

Theorem 20

Let (G,B)≤̃(F,A) be soft modules over M, then (G,B) ⊴̃ (F,A) if and only if A = B and G(a) ⊴ F(a) for each aA.

Proof

Suppose A = B and G(a) ⊴ F(a) for each aA. If there is a soft submodule (H,C) of (F,A) such that (G,A) ⋒ (H,C) = 0. Then G(c) ∩ H(c) = 0 for cCA. While G(c) is essential in F(c), so H(c) = 0 for any cC, i.e., (H,C) = 0.

Conversely, suppose (G,B) ⊴̃ (F,A). Assume BA, then AB ≠ ∅︀. Let (T,A) be a soft submodule of (F,A) such that

T(a)={F(a),aA-B,0,aB,

then (T,A) is a nontrivial soft submodule of (F,A) and (G,B) ⋒ (T,A) is trivial, a contradiction. Hence A = B. For aA, if there is some KF(a) such that KG(a) = 0. Take

C={a},T(a)=K.

Then CA, (T,C)≤̃(F,A) and (T,C) ⋒ (G,A) = 0, which implies (T,C) = 0. In particular, K = T(a) = 0. Therefore G(a) ⊴ F(a) for each aA.

Every soft module has an essential soft submodule, since every module has an essential submodule. A trivial example of essential soft submodule is (F,A) ⊴̃ (F,A) for any soft module (F,A). For nontrivial example see the following.

Example 21

Take ℤ as a ℤ-module. Let (F,ℕ) be a whole soft module over ℤ, i.e., F(n) = ℤ for all n ∈ ℕ. Let (G,ℕ) be a soft module over ℤ with G(n) = nℤ, n ∈ ℕ. Note that nℤ ⊴ ℤ, so (G,ℕ)⊴̃(F,ℕ) by Theorem 20.

As a corollary of Theorem 20, we give another equivalent definitions for essential soft submodule.

Corollary 22

Let (G,B)≤̃(F,A) be soft modules over RM. Then (G,B)⊴̃(F,A) if and only if A = B and for each aA, 0 ≠ xF(a), there exists an rR such that 0 ≠ rxG(a).

Proof

By Theorem 20, (G,B)⊴̃(F,A) if and only if A = B and G(a) ⊴ F(a) for any aA, which is equivalent to say that, for any aA and 0 ≠ xF(a), there is an rR such that 0 ≠ rxG(a) [18, Lemma 5.19].

Definition 23

Let (F,A) and (G,B) be soft modules over M and N, respectively, (H,C)≤̃(F,A), and (f, g) : (F,A) → (G,B) be a soft homomorphism. Define H′(c) = f(H(c)), cC. Then (H′, C) is a soft module over N, called the image of (H,C) under (f, g), denoted by (f, g)(H,C). Let (K,D)≤̃(G,B). For dD, define K′(d) = f(K(d)). Then (K′,D) is a soft module over M, called the preimage of (K,D) under (f, g), denoted by (f, g)(K,D).

Directly from this definition we get the following.

Proposition 24

Let (f, g) : (F,A) → (G,B) be a soft homomorphism. Then

  1. for any (H1, C1)≤̃ (H2, C2) ≤̃(F,A),

    (f,g)(H1,C1)˜(f,g)(H2,C2);

  2. for any (K1,D1)≤̃ (K2,D2)≤̃(G,B),

    (f,g)(K1,D1)˜(f,g)(K2,D2);

  3. for any (K1,D1)⊴̃(K2,D2)≤̃(G,B),

    (f,g)(K1,D1)_˜(f,g)(K2,D2).

Proof

If (H1, C1)≤̃(H2, C2), then H1(c) ≤ H2(c) for any cC1. Hence f(H1(c)) ≤ f(H2(c)). If (K1,D1)≤̃(K2,D2), then we have K1(d)≤K2(d) for any dD1. Hence f(K1(d)) ≤ f(K2(d)). Furthermore, suppose (K1,D1)⊴̃(K2,D2), then K1(d) ⊴ K2(d) for any dD1 which implies f(K1(d)) ⊴f(K2(d)).

4. The Socle of Soft Modules

In this section, we introduce the definition of the socle of soft modules and investigate its basic properties. We also give two equivalent expressions of the socle of soft modules.

Definition 25

Let (F,A) be a soft module over M. The socle of (F,A) is defined to be a soft module (S,A) over M, such that S(a) = Soc F(a) for all aA, denoted by (S,A) = SocM(F,A).

Note that the socle of ℤ is zero, so the socle of a whole soft module (F,A) over the regular module ℤ is trivial. Next we give some nontrivial examples.

Example 26

Let n be a big integer and n=p1e1ptet be its prime decomposition with ei > 0. Take M = ℤn as a ℤ-module. Let A = ℕ, and F(a) = ℤn for aA. Then (F,A) is a soft module over ℤn and

SocF(a)=Socn=pinnpinpiapi.

Therefore, SocM(F,A) = (S,A) and S(a) ≅ ⊕pi|api.

Directly from Definition 25 we get SocM(F,A)≤̃(F,A). For a module M, SocM is the largest semisimple submodule. We will show that, the socle of soft modules is also the largest semisimple soft submodule of (F,A). Now we define a simple (semisimple) soft submodule.

Definition 27

Let (F,A) be a soft module over M. A soft submodule (G,B) of (F,A) is said to be simple (semisimple), if F(a) is a simple (semisimple) submodule of M for all aA.

Example 28

Let n be an integer. Take M = ℤn as a ℤ-module. Let A = {a > 0 | n/a is prime}, and F(a) = an for aA. Then F(a) ≅ ℤp where p = n/a, (F,A) is a simple soft module over ℤn and Soc F(a) = Soc an = an = F(a). Therefore, SocM(F,A) = (F,A).

Example 29

Let n be a square free integer. Take M = ℤn as a ℤ-module. Then M = ℤp1 ⊕ ··· ⊕ ℤpt is semisimple. Let A = {a > 0 | a|n}, and F(a) = an for aA. Then (F,A) is a semisimple soft module over ℤn and Soc F(a) = Soc an = an = F(a). Therefore, SocM(F,A) = (F,A).

Proposition 30

Let (F,A) be a soft module over M. Then SocM(F,A) is the largest semisimple soft submodule of (F,A).

Proof

Note that Soc F(a) is the largest semisimple submodule of F(a), so SocM(F,A) is semisimple. Let (G,B)≤̃(F,A) be semisimple. Then G(b) ≤ Soc F(b) for all bB, hence (G,B)≤̃Soc (F,A).

Proposition 31

Let (F,A) be a soft module over M, (G,B)≤̃(F,A). Then,

SocM(G,B)=(G,B)SocM(F,A).

Particularly, SocM(SocM(F,A)) = SocM(F,A).

Proof

Since (G,B)≤̃(F,A), then G(b) ≤ F(b) for all bB. [18, Corollary 9.9] implies Soc G(b) ≤ Soc F(b) for all bB, hence SocM(G,B)≤̃SocM(F,A) and then the first conclusion follows. Taking (G,B) = SocM(F,A) gives the second equation.

Proposition 32

Let (F,A) be a soft module over M. Then SocM(F,A)⊴̃(F,A) if and only if each nontrivial soft submodule of (F,A) contains a minimal soft submodule.

Proof

Suppose SocM(F,A)⊴̃(F,A). Then SocF(a) ⊴ F(a) for all aA. Let (H,B) be a nontrivial soft submodule of (F,A), then there is some bBA such that H(b) is a nonzero submodule of F(b). It follows from [18, Corollary 9.10] that H(b) contains a minimal submodule. Let Lb be a minimal submodule of H(b). Define (T,C) to be the nontrivial soft submodule of (H,B) with

C={b},T(b)=Lb.

Then (T,C) is a minimal soft submodule of (H,B).

Conversely, suppose each nonzero soft submodule of (F,A) contains a minimal soft submodule. For aA, let Ka be any nonzero submodule of F(a). Define (GKa,BKa) to be the nonzero soft submodule of (F,A) with

BKa={a},GKa(a)=Ka.

Then (GKa,BKa) is a nontrivial soft submodule of (F,A). Let (T,C) be a minimal soft submodule of (GKa,BKa). Then C = BKa= {a} and T(a) is a minimal submodule of GKa (a) = Ka, i.e., a minimal submodule of F(a). That is to say, every nonzero submodule of F(a) contains minimal submodule. It follows from [18, Corollary 9.10] that Soc F(a) ⊴ F(a) for all aA, hence SocM(F,A)⊴̃(F,A).

Proposition 33

Let (F,A) and (G,B) be soft modules over M and N, respectively, (f, g) : (F,A) → (G,B) be a soft homomorphism. Then

(f,g)(SocM(F,A))˜SocN(Gg,A).
Proof

Since (f, g) is a soft homomorphism, then f(F(a)) = G(g(a)) for all aA. Applying [18, Proposition 9.8] to the homomorphism f|F(a) : F(a) → G(g(a)) gives f(Soc F(a)) ≤ SocG(g(a)). Therefore (f, g)(SocM(F,A))≤̃SocN(Gοg,A).

We find two equivalent definitions of the socle of soft module.

Theorem 34

Let (F,A) be a soft module over M. Then

SocM(F,A)={(G,A)(G,A)is essential in (F,A)}=Σ˜{(G,B)(G,B)is minimal in (F,A)}.
Proof

Denote

(S,A)=SocM(F,A),(H,A)={(G,A)(G,A)is essential in (F,A)}.

Then H(a) = ∩(G,A)⊴̃(F,A)G(a) for each aA. That is to say, H(a) is an intersection of some essential submodules of F(a). By Definition 25 and [18, Proposrion 9.7], S(a) = Soc F(a) is the intersection of all of the essential submodules of F(a), then S(a) ≤ H(a). Hence (S,A)≤̃(H,A).

Conversely, for a0A, let La0 be any essential submodule of F(a0). Define

GLa0(a)={La0,a=a0,F(a),aa0,aA.

Then (GLa0,A) is an essential soft submodule of (F,A). So

(H,A)={(G,A)(G,A)_˜(F,A)}˜(GLa0,A)

for each a0A and La0 essential in F(a0). Hence

(H,A)˜{(GLa0,A)La0_F(a0),a0A}.

Notice that for each a0A, La0 go through all of the essential soft submodule of F(a), then by [18, Proposition 9.7], ∩La0F(a0)La0 = Soc F(a0). Then (1) reads (H,A) ≤̃ (S,A).

To proof the second equation, denote

(K,A)=Σ˜{(G,B)(G,B)is minimal in (F,A)}.

Then, K(a) = ∑aBG(a), where (G,B) goes through all the minimal soft submodules of (F,A) with aB. That is to say, K(a) is a sum of some minimal submodules of F(a). Note that S(a) = Soc F(a) is the sum of all of the minimal submodules of F(a) [18, Proposition 9.7], then K(a) ≤ S(a) for all aA. Therefore, (K,A)≤̃(S,A).

Conversely, for aA, if Sa is a minimal submodule of F(a), define

BSa={a},GSa(a)=Sa.

Then (GSa,BSa) is a minimal soft submodule of (F,A) and

(GSa,BSa)˜Σ˜{(G,B)(G,B)is minimal in (F,A)}=(K,A).

Hence

(S,A)=Σ˜{(GSa,BSa)Sais minimal in F(a),aA}˜(K,A),

where for the first equation we use the fact ∑{Sa | Sa is minimal in F(a)} = Soc F(a) for all aA [18, Proposition 9.7].

5. The Radical of Soft Modules

In 2013, Turkmen and Pancar [14] defined the radical of soft module.

Definition 35 ([14])

Let (F,A) be a soft module over M. The radical of (F,A) is defined to be (R,A), where R(a) = Rad F(a) for all aA, and denoted by (R,A) = RadM(F,A).

Now we compute the soft radicals of the examples we discuss in last section.

Example 36

Let n be a big integer and n=p1e1ptet be its prime decomposition with ei > 0. Take M = ℤn as a ℤ-module. Let A = ℕ, and F(a) = ℤn for aA. Then (F,A) is a soft module over ℤn and RadF(a)=Radn=pinpin=p1ptnpiapiei-1. Therefore, RadM(F,A) = (R,A) and R(a)piapie1-1.

Example 37

Let n be an integer. Take M = ℤn as a ℤ-module. Let A = {a > 0 | n/a is prime}, and F(a) = an for aA. Then Rad F(a) = Rad an = 0. Therefore, RadM(F,A) = 0.

Turkmen and Pancar ([14, Theorem 9, 10]) discussed the properties of the radical of soft module and proved

Σ˜{(G,B)(G,B)˜(F,A)}˜RadM(F,A),RadM(F,A)˜{(G,A)(G,A)is maximal in (F,A)}.

We find that these two relations actually induce two equivalent definitions of the radical of soft module.

Theorem 38

Let (F,A) be a soft module over M. Then

RadM(F,A)=Σ˜{(G,B)(G,B)is small in (F,A)}={(G,A)(G,A)is maximal in (F,A)}.
Proof

For aA, let Ka be any small soft submodule of F(a). Define

BKa={a},GKa(a)=Ka.

Then (GKa,BKa) ≪̃ (F,A) and Lemma 15 implies

(GKa,BKa)˜Σ˜{(G,B)(G,B)˜(F,A)},

so that

Σ˜{(GKa,BKa)KaF(a),aA}˜Σ˜{(G,B)(G,B)˜(F,A)}.

Notice that for each aA, Ka go through all of the small soft submodule of F(a), then by [18, Proposition 9.13], ∑{Ka | Ka F(a)} = Rad F(a) for each aA. Hence equation (3) reads

RadM(F,A)˜Σ˜{(G,B)(G,B)is small in (F,A)},

and then [14, Theorem 9] implies the first equation.

To proof the second equation, fix a maximal submodule MaF(a) for each aA. For a0A, if La0 is a maximal submodule of F(a0), define

GLa0(a)={La0,a=a0,Ma,aa0,aA.

Then (GLa0,A) is a maximal soft submodule of (F,A). Hence

{(G,A)(G,A)is maximal in (F,A)}˜(GLa0,A)

for each a0A and La0 maximal in F(a0), and then

{(G,A)(G,A)˜(F,A)maximal}˜{(GLa0,A)La0F(a0)maximal,a0A}=RadM(F,A).

Here, for the last equation we use the fact that ∩{La | La is maximal in F(a)} = Rad F(a) for each aA [18, Proposition 9.13]. Then [14, Theorem 10] implies the second equation.

6. Conclusion

In this paper, we defined the socle of a soft module and redefine essential soft submodules which is a little different from [17], investigated the property of essential soft submodule and the socle of a soft module. Further, we gave several equivalent definitions of essential soft submodule, the socle and the radical of soft modules.

Acknowledgments

This work is supported by China NNSF (Grant No. 11771176). The authors thanks the referees for reading the manuscript carefully and their helpful comments.


Conflict of Interest

No potential conflict of interest relevant to this article was reported.


References
  1. Molodtsov, D (1999). Soft set theory-first results. Computers & Mathematics with Applications. 37, 19-31. https://doi.org/10.1016/S0898-1221(99)00056-5
    CrossRef
  2. Maji, PK, Biswas, R, and Roy, AR (2003). Soft set theory. Computers & Mathematics with Applications. 45, 555-562. https://doi.org/10.1016/S0898-1221(03)00016-6
    CrossRef
  3. Aktas, H, and Cagman, N (2007). Soft sets and soft groups. Information Sciences. 177, 2726-2735. https://doi.org/10.1016/j.ins.2006.12.008
    CrossRef
  4. Feng, F, Jun, YB, and Zhao, X (2008). Soft semirings. Computers & Mathematics with Applications. 56, 2621-2628. https://doi.org/10.1016/j.camwa.2008.05.011
    CrossRef
  5. Acar, U, Koyuncu, F, and Tanay, B (2010). Soft sets and soft rings. Computers & Mathematics with Applications. 59, 3458-3463. https://doi.org/10.1016/j.camwa.2010.03.034
    CrossRef
  6. Irfan Ali, M, Feng, F, Liu, X, Min, WK, and Shabir, M (2009). On some new operations in soft set theory. Computers & Mathematics with Applications. 57, 1547-1553. https://doi.org/10.1016/j.camwa.2008.11.009
    CrossRef
  7. Sun, QM, Zhang, Z, and Liu, J (2008). Soft sets and soft modules. Rough Sets and Knowledge Technology. Heidelberg: Springer, pp. 403-409 https://doi.org/10.1007/978-3-540-79721-0_56
    CrossRef
  8. Atagun, AO, and Sezgin, A (2011). Soft substructures of rings, fields, and modules. Computers & Mathematics with Applications. 61, 592-601. https://doi.org/10.1016/j.camwa.2010.12.005
    CrossRef
  9. Xiao, GX, Xiang, D, and Zhan, J (2012). Fuzzy soft modules. East Asian Mathematics Journal. 28, 1-11.
    CrossRef
  10. Gunduz, C, and Bayramov, S (2011). Intuitionistic fuzzy soft modules. Computers & Mathematics with Applications. 62, 2480-2486. https://doi.org/10.1016/j.camwa.2011.07.036
    CrossRef
  11. Yin, Y, Li, H, and Jun, YB (2012). On algebraic structure of intuitionistic fuzzy soft sets. Computers & Mathematics with Applications. 64, 2896-2911. https://doi.org/10.1016/j.camwa.2012.05.004
    CrossRef
  12. Xiang, D . Soft module theory., Proceedings of 2013 10th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), 2013, Shenyang, China, Array, pp.103-107. https://doi.org/10.1109/FSKD.2013.6816175
    CrossRef
  13. Ozturk, TY, Gunduz, C, and Bayramov, S (2013). Inverse and direct systems of soft modules. Annals of Fuzzy Mathematics and Informatics. 5, 73-85.
  14. Turkmen, E, and Pancar, A (2013). On some new operations in soft module theory. Neural Computing and Applications. 22, 1233-1237. https://doi.org/10.1007/s00521-012-0893-6
    CrossRef
  15. Shah, T, and Medhit, S (2014). Primary decomposition in a soft ring and a soft module. Iranian Journal of Science and Technology. 38, 311-320. (special issue: mathematics)
  16. Onar, S, Yavuz, S, Ersoy, BA, and Hila, K (2018). Vague soft modules. Journal of Intelligent and Fuzzy Systems. 34, 2597-2609. https://doi.org/10.3233/JIFS-17497
    CrossRef
  17. Yucel, CC, and Acar, U (2017). A note on soft modules. Communications Faculty of Sciences University Of Ankara-Series A1 Mathematics And Statistics. 66, 66-74. D O I: https://doi.org/10.1501/Commua1_0000000775
    CrossRef
  18. Anderson, FW, and Fuller, KR (1992). Rings and Categories of Modules. New York, NY: Springer
    CrossRef
  19. Lam, TY (1999). Lectures on Modules and Rings. New York, NY: Springer
    CrossRef
  20. Wisbauer, R (1991). Foundations of Module and Ring Theory: A Handbook for Study and Research. Philadelphia, PA: Gordon and Breach Science Publishers
Biographies

Bijan Davvaz took his B.Sc. degree in Applied Mathematics at Shiraz University, Iran in 1988 and his M.Sc. degree in Pure Mathematics at Tehran University in 1990. In 1998, he received his Ph.D. in Mathematics at Tarbiat Modarres University. He is a member of Editorial Boards of 25 Mathematical journals. He is the author of around 500 research papers, especially on algebraic hyperstructures and fuzzy logic. Moreover, he published seven books in algebra. He was chosen as the best professor (2009) and distinguished researcher (2011) in Iran. He is currently Professor of Mathematics at Yazd University in Iran.

E-mail: bdavvaz@yahoo.com


Jing Ma is a professor in the Department of Mathematics at Jilin University, Changchun, China. She received her Ph.D. from Jilin University in 2005. She works on algebra, soft algebra, fuzzy logic and number theory. She is the author of around 30 research papers. She has also published two books on algebra.

E-mail: jma@jlu.edu.cn


Chengxia Sun is a teacher at United Experimental School of AHSJU and Livon, Changchun, China. She received her M.Sc. from Jilin University in 2016. She works on algebra and soft algebra.

E-mail: cxsun13@emails.jlu.edu.cn