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1. Introduction

Zadeh [1] introduced the concept of fuzzy set as a new mathematical tool for dealing with
uncertainties and so many researchers were conducted on the generalizations of the notion
of fuzzy sets. Various theories have their own difficulties which are pointed out in [2].
To overcome these difficulties, Molodtsov [2] introduced the concept of soft set as a new
mathematical tool for dealing with uncertainties that is free from the difficulties that have
troubled the usual theoretical approaches. Maji et al. [3, 4] also studied several operations on
the theory of soft sets and described the application of soft set theory to a decision-making
problem. Aktas and Cagman [5] studied the basic concepts of soft set theory and discussed
the notion of soft groups. Jun and Park [6] studied applications of soft sets in ideal theory
of BCK/BCI-algebras. We refer the reader to the papers [7–15] for further information
regarding algebraic structures/properties of soft set theory.

Schein [16] have considered systems of the form (Φ; ◦, \), where Φ is a set of functions
closed under the composition “◦” of functions (and hence (Φ; ◦) is a function semigroup) and
the set theoretic subtraction “\” (and hence (Φ; \) is a subtraction algebra in the sense of [17]).
Jun and Kim [18] discussed ideal theory of subtraction algebras.

In this paper we introduce a notion of double-framed soft deductive system in a subtraction
algebra, and study some properties of them. We give conditions for a double-framed soft set to
be a double-framed soft deductive system and establish characterizations of a double-framed
soft deductive system

2. Preliminaries

A subtraction algebra is a system (X;−) with a single binary operation “−” that satisfies the
following identities: for any x, y, z ∈ X ,
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x− (y − x) = x; (S1)

x− (x− y) = y − (y − x); (S2)

(x− y)− z = (x− z)− y. (S3)

The last identity permits us to omit parentheses in expressions
of the form (x− y)− z. For any a, b ∈ X , we define an order
relation ≤ on X: a ≤ b ⇔ a − b = 0, where 0 = a − a

is an element that does not depend on the choice of a ∈ X .
The ordered set (X;≤) is a semi-Boolean algebra in the sense
of [17], that is, it is a meet semilattice with zero 0 in which
every interval [0, a] is a Boolean algebra with respect to the
induced order. Here a ∧ b = a − (a − b); the complement of
an element b ∈ [0, a] is a− b; and if b, c ∈ [0, a], then

b ∨ c =(b′ ∧ c′)′ = a− ((a− b) ∧ (a− c))

=a− ((a− b)− ((a− b)− (a− c))).

In a subtraction algebra, the following are true (see [18]):

(x− y)− y = x− y. (a1)

x− 0 = x and 0− x = 0. (a2)

(x− y)− x = 0. (a3)

x− (x− y) ≤ y. (a4)

(x− y)− (y − x) = x− y. (a5)

x− (x− (x− y)) = x− y. (a6)

(x− y)− (z − y) ≤ x− z. (a7)

x ≤ y if and ony if x = y − w for some w ∈ X. (a8)

x ≤ y implies x− z ≤ y − z and z − y ≤ z − x

for all z ∈ X. (a9)

x, y ≤ z implies x− y = x ∧ (z − y). (a10)

(x ∧ y)− (x ∧ z) ≤ x ∧ (y − z). (a11)

Proposition 2.1 ( [18]). Let X be a subtraction algebra and let
x, y ∈ X. If w ∈ X is an upper bound for x and y, then the
element

x ∨ y := w − ((w − y)− x)

is a least upper bound for x and y.

Definition 2.2 ( [18]). A nonempty subset S of X is called a
subalgebra of X if it satisfies :

(∀x, y ∈ S) (x− y ∈ S).

Definition 2.3. A nonempty subsetD ofX is called a deductive
system of X (it is called an ideal of X in [18]) if it satisfies:

(1) 0 ∈ D,

(2) (∀x ∈ X)(∀y ∈ D)(x− y ∈ D ⇒ x ∈ D).

Molodtsov [2] defined the soft set in the following way: Let
U be an initial universe set and E be a set of parameters. Let
P(U) denotes the power set of U and A,B,C, · · · ⊆ E.

Definition 2.4 ( [2]). A pair (α̃, A) is called a soft set over U,
where α̃ is a mapping given by

α̃ : A→P(U).

In other words, a soft set over U is a parameterized family of
subsets of the universe U. For ε ∈ A, α̃(ε) may be considered
as the set of ε-approximate elements of the soft set (α̃, A).

Clearly, a soft set is not a set. For illustration, Molodtsov [2]
considered several examples in [2].

Definition 2.5 ( [10]). A double-framed pair
〈

(α̃, β̃);A
〉

is

called a double-framed soft set of A over U, where α̃ and β̃ are
mappings from A to P(U).

3. Double-Framed Soft Deductive Systems

In what follows, we take E = X, as a set of parameters,
which is a subtraction algebra and A,B,C, · · · be subalgebras
of X unless otherwise specified.

Definition 3.1. A double-framed soft
〈

(α̃, β̃);X
〉

of X is
called a double frame soft deductive system set of X over
U if the following conditions are true:

(∀x ∈ X) (α̃(0) ⊇ α̃(x), β̃(0) ⊆ β̃(x)), (c1)

(∀x, y ∈ X) (α̃(x) ⊇ α̃(x− y) ∩ α̃(y),

β̃(x) ⊆ β̃(x− y) ∪ β̃(y)), (c2)

Example 3.2. Consider a subtraction algebra

X = {0, e1, e2, e3, e4}

with the following Cayley table [19]:

− 0 e1 e2 e3 e4

0 0 0 0 0 0

e1 e1 0 e1 0 e1

e2 e2 e2 0 0 e2

e3 e3 e2 e1 0 e3

e4 e4 e4 e4 e4 0
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For A = X and U = {h1, h2, h3, h4, h5, h6} . We define a
double-framed soft set

〈
(α̃, β̃);A

〉
over U as follows:

α̃ : A→P(U), x 7→



{h1, h3, h4, h5} if x = 0,
{h1, h3, h4, h5} if x = e1,
{h3, h4, h5} if x = e2,
{h3, h4, h5} if x = e3,
{h1, h3, h4, h5} if x = e4,

and

β̃ : A→P(U), x 7→



{h1, h3} if x = 0,
{h1, h3} if x = e1,
{h1, h3, h4} if x = e2

{h1, h3, h4} if x = e3,
{h1, h3} if x = e4.

It is routine to verify that
〈

(α̃, β̃);A
〉

is a double-framed
soft deductive system of X over U.

Proposition 3.3. Every double-framed soft deductive system〈
(α̃, β̃);X

〉
of X over U satisfies:

(∀x, y ∈ X) (x ≤ y ⇒ α̃(x) ⊇ α̃(y), β̃(x) ⊆ β̃(y)). (1)

Proof. Let x, y ∈ X be such that x ≤ y. Then x− y = 0, and
so

α̃(x) ⊇ α̃(x− y) ∩ α̃(y) = α̃(0) ∩ α̃(y) = α̃(y),

β̃(x) ⊆ β̃(x− y) ∪ β̃(y) = β̃(0) ∪ β̃(y) = β̃(y).

Proposition 3.4. Every double-framed soft deductive system〈
(α̃, β̃);X

〉
of X over U satisfies:

(∀x, y, z ∈ X)

(
α̃(x− z) ⊇ α̃((x− y)− z) ∩ α̃(y),

β̃(x− z) ⊆ β̃((x− y)− z) ∪ β̃(y).

)
(2)

Proof. Combining (S3) and Definition 3.1 (c2), we get

α̃(x− z) ⊇ α̃((x− z)− y) ∩ α̃(y)

= α̃((x− y)− z) ∩ α̃(y),

and

β̃(x− z) ⊆ β̃((x− z)− y) ∪ β̃(y)

= β̃((x− y)− z) ∪ β̃(y)

for all x, y, z ∈ X.

We give conditions for a double-framed soft set to be a
double-framed soft deductive system .

Theorem 3.5. If double-framed soft set
〈

(α̃, β̃);X
〉

ofX over

U satisfying (c1) and (2), then
〈

(α̃, β̃);X
〉

is a double-framed
soft deductive system of X over U.

Proof. Taking z = 0 in (2) and using (a2), we get

α̃(x) =α̃(x− 0) ⊇ α̃((x− y)− 0) ∩ α̃(y)

=α̃(x− y) ∩ α̃(y)

and

β̃(x) =β̃(x− 0) ⊆ β̃((x− y)− 0) ∪ β̃(y)

=β̃(x− y) ∪ β̃(y)

for all x, y ∈ X. Hence
〈

(α̃, β̃);X
〉

is a double-framed soft
deductive system of X over U.

Corollary 3.6. Let
〈

(α̃, β̃);X
〉

be a double-framed soft set of

X over U. Then
〈

(α̃, β̃);X
〉

is a double-framed soft deductive
system of X over U if and only if it satisfies conditions (c1)
and (2).

The following is a characterization of a double-framed soft
deductive system of X over U.

Theorem 3.7. Let
〈

(α̃, β̃);X
〉

be a double-framed soft set of

X over U. Then
〈

(α̃, β̃);X
〉

is a double-framed soft deductive
system of X over U if and only if it satisfies the following
conditions:

(∀x, y ∈ X)(α̃(x− y) ⊇ α̃(x), β̃(x− y) ⊆ β̃(x)), (3)

(∀x, a, b ∈ X)

(
α̃(x− ((x− a)− b)) ⊇ α̃(a) ∩ α̃(b),

β̃(x− ((x− a)− b)) ⊆ β̃(a) ∪ β̃(b)

)
.

(4)

Proof. Assume that
〈

(α̃, β̃);X
〉

is a double-framed soft de-
ductive system of X over U. Combining (a3) and Defintion 3.1,
we have

α̃(x− y) ⊇ α̃((x− y)− x) ∩ α̃(x) = α̃(0) ∩ α̃(x)

= α̃(x),

and

β̃(x− y) ⊆ β̃((x− y)− x) ∪ β̃(x) = β̃(0) ∪ β̃(x)
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= β̃(x)

for all x, y ∈ X. Since

(x− ((x− a)− b))− a = (x− a)− ((x− a)− b) ≤ b,

it follows from (1) that

α̃((x− ((x− a)− b))− a) ⊇ α̃(b),

and

β̃((x− ((x− a)− b))− a) ⊆ β̃(b)

so from (c2) that

α̃(x− ((x− a))− b))

⊇ α̃((x− ((x− a)− b))− a) ∩ α̃(a)

⊇ α̃(a) ∩ α̃(b),

and

β̃(x− ((x− a))− b))

⊆ β̃((x− ((x− a)− b))− a) ∪ β̃(a)

⊆ β̃(a) ∪ β̃(b).

Conversely assume that
〈

(α̃, β̃);X
〉

be a double-framed soft
set of X over U satisfying conditions (3) and (4). If we take
y = x in (3), then α̃(0) = α̃(x − x) ⊇ α̃(x) and β̃(0) =

β̃(x− x) ⊆ β̃(x) for all x ∈ X. By (4), we obtain

α̃(x) = α̃(x− 0)

= α̃(x− ((x− y)− (x− y)))

= α̃(x− ((x− (x− y))− y))

⊇ α̃(x− y) ∩ α̃(y),

and

β̃(x) = β̃(x− 0)

= β̃(x− ((x− y)− (x− y)))

= β̃(x− ((x− (x− y))− y))

⊆ β̃(x− y) ∪ β̃(y)

for all x, y ∈ X . Hence
〈

(α̃, β̃);X
〉

is a double-framed soft
deductive system of X over U.

Proposition 3.8. Every double-framed soft deductive system

〈
(α̃, β̃);X

〉
of X over U satisfies the following assertion:

(∀x, y ∈ X)

(
∃x ∨ y ⇒

(
α̃(x ∨ y) ⊇ α̃(x) ∩ α̃(y)

β̃(x ∨ y) ⊆ β̃(x) ∩ β̃(y)

))
.

(5)

Proof. Suppose there exists x ∨ y for x, y ∈ X. Let w be an
upper bound of x and y. Then x ∨ y = w − ((w − y)− x) is
the least upper bound for x and y (see Proposition 2.1), and so

α̃(x ∨ y) = α̃(w − ((w − y)− x)) ⊇ α̃(x) ∩ α̃(y),

and

β̃(x ∨ y) = β̃(w − ((w − y)− x)) ⊆ β̃(x) ∪ β̃(y)

by (4). This completes the proof.

Proposition 3.9. Let
〈

(α̃, β̃);X
〉

be a double-framed soft of

X over U. Then
〈

(α̃, β̃);X
〉

is a double-framed soft deductive
system set of X over U if and only if it satisfies:

(∀x, y, z ∈ X) (x− y ≤ z ⇒

(
α̃(x) ⊇ α̃(y) ∩ α̃(z),

β̃(x) ⊆ β̃(y) ∪ β̃(z)

)
).

(6)

Proof. Assume that
〈

(α̃, β̃);X
〉

is a double-framed soft of
X over U and let x, y, z ∈ X be such that x − y ≤ z. Then
α̃(z) ⊆ α̃(x− y) and β̃(z) ⊇ β̃(x− y) by (1). It follows from
(c2) that

α̃(x) ⊇ α̃(x− y) ∩ α̃(y) ⊇ α̃(y) ∩ α̃(z),

and

β̃(x) ⊆ β̃(x− y) ∪ β̃(y) ⊆ β̃(y) ∪ β̃(z).

Conversely suppose that
〈

(α̃, β̃);X
〉

satisfies (6). Since
0− y ≤ y for all y ∈ X, we have

α̃(0) ⊇ α̃(y) ∩ α̃(y) = α̃(y),

and

β̃(0) ⊆ β̃(y) ∪ β̃(y) = β̃(y)

by (6). Thus (c1) is valid. Since x−(x−y) ≤ y for all x, y ∈ X
by (a4), it follows from (6) that α̃(x) ⊇ α̃(x− y) ∩ α̃(y) and
β̃(x) ⊆ β̃(x−y)∪β̃(y).Hence

〈
(α̃, β̃);X

〉
is a double-framed

soft deductive system of X over U.

Let
〈

(α̃, β̃);A
〉

and
〈

(f̃ , g̃);B
〉

be double-framed soft sets
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over a common universeU. Then
〈

(α̃, β̃);A
〉

is called a double-

framed soft subset [10] of
〈

(f̃ , g̃);B
〉
, denoted by

〈
(α̃, β̃);A

〉
⊆̃
〈

(f̃ , g̃);B
〉
,

if (i) A ⊆ B,
(ii) (∀e ∈ A)(

α̃(e) and f̃(e) are identical approximations,
β̃(e) and g̃(e) are identical approximations.

)

Theorem 3.10. Let
〈

(α̃, β̃);A
〉

be a double-framed soft subset

of a double-framed soft set
〈

(f̃ , g̃);B
〉
. If

〈
(f̃ , g̃);B

〉
is a

double-framed soft deductive system of B over U, then so is〈
(α̃, β̃);A

〉
.

Proof. Since x ∈ A for all x ∈ B, we have α̃(x) = f̃(x) ⊆
f̃(0) = α̃(0) and β̃(x) = g̃(x) ⊇ g̃(0) = β̃(0). Let x, y ∈ A.
Then x, y ∈ B, and so

α̃(x− y) ∩ α̃(y) = f̃(x− y) ∩ f̃(y) ⊆ f̃(x) = α̃(x),

β̃(x− y) ∪ β̃(y) = g̃(x− y) ∪ g̃(y) ⊇ g̃(x) = β̃(x).

Hence
〈

(α̃, β̃);A
〉

is a double-framed soft deductive system
of A over U.

Theorem 3.11. Let
〈

(α̃, β̃);X
〉

be a double-framed soft of X
over U. Then the set

D(0) := {x ∈ X | α̃(x) = α̃(0), β̃(x) = β̃(0)}

is a deductive system of X.

Proof. Obviously 0 ∈ D(0). Let x, y ∈ X be such that x−y ∈
D(0) and y ∈ D(0). Then α̃(x − y) = α̃(0) = α̃(y) and
β̃(x − y) = β̃(0) = β̃(y). This implies that α̃(x) ⊇ α̃(x −
y) ∩ α̃(y) = α̃(0) and β̃(x) ⊆ β̃(x − y) ∪ β̃(y) = β̃(0) by
(c2). Since α̃(0) ⊇ α̃(x) and β̃(0) ⊆ β̃(x) for all x ∈ X, it
follows that α̃(x) = α̃(0) and β̃(x) = β̃(0) so that x ∈ D(0).

Therefore D(0) is a deductive system of X.

For two double-framed soft sets
〈

(α̃, β̃);A
〉

and
〈

(f̃ , g̃);A
〉

over U , the double-framed soft int-uni set [10] of
〈

(α̃, β̃);A
〉

and
〈

(f̃ , g̃);A
〉

is defined to be a double-framed soft set

〈
(α̃⊗ f̃ , β̃ ⊕ g̃);A

〉
,

where

α̃⊗ f̃ : A→P(U), x 7→ α̃(x) ∩ f̃(x),

β̃ ⊕ g̃ : A→P(U), x 7→ β̃(x) ∪ g̃(x).

It is denoted by
〈

(α̃, β̃);A
〉
u
〈

(f̃ , g̃);A
〉

=
〈

(α̃⊗ f̃ , β̃⊕ g̃);

A
〉
.

Theorem 3.12. The double-framed soft int-uni set of two
double-framed soft deductive system

〈
(α̃, β̃);A

〉
and

〈
(f̃ , g̃;

A
〉

of A over U is a double-framed soft deductive system of A
over U.

Proof. For all x ∈ A, we have (α̃ ⊗ f̃)(x) = α̃(x) ∩ f̃(x) ⊆
α̃(0) ∩ f̃(0) = (α̃ ⊗ f̃)(0) and (β̃ ⊕ g̃)(0) = β̃(0) ∪ g̃(0) ⊆
β̃(x) ∪ g̃(x) = (β̃ ⊕ g̃)(x). Let x, y ∈ A. Then x, y ∈ B, and
so

(α̃⊗ f̃)(x− y) ∩ (α̃⊗ f̃)(y)

= (α̃(x− y) ∩ f̃(x− y)) ∩ (α̃(y) ∩ f̃(y))

= α̃(x− y) ∩ α̃(y)) ∩ (f̃(x− y) ∩ f̃(y))

⊆ α̃(x) ∩ f̃(x) = (α̃⊗ f̃)(x),

and

(β̃ ⊕ g̃)(x− y) ∪ (β̃ ⊕ g̃)(y)

= (β̃(x− y) ∪ g̃(x− y)) ∪ (β̃(y) ∪ g̃(y))

= (β̃(x− y) ∪ β̃(y)) ∪ (g̃(x− y) ∪ g̃(y))

⊇ β̃(x) ∪ g̃(x) = (β̃ ⊕ g̃)(x),

Hence
〈

(α̃⊗ f̃ , β̃ ⊕ g̃);A
〉

is a double-framed soft deductive
system of A over U.
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