
Original Article
International Journal of Fuzzy Logic and Intelligent Systems
Vol. 21, No. 2, June 2021, pp. 101-122
http://doi.org/10.5391/IJFIS.2021.21.2.101

ISSN(Print) 1598-2645
ISSN(Online) 2093-744X

Data Stream Classification Algorithms for
Workload Orchestration in Vehicular Edge
Computing: A Comparative Evaluation
Mutaz Al-Tarawneh
Computer Engineering Department, Mutah University, Karak, Jordan

Abstract

This paper reports on the use of online data stream classification algorithms to support workload
orchestration in vehicular edge computing environments. These algorithms can be used to
predict the ability of available computational nodes to successfully handle computational tasks
generated from vehicular applications. Several online data stream classification algorithms
have been evaluated based on synthetic datasets generated from simulated vehicular edge
computing environments. In addition, a multi-criteria decision analysis technique was utilized
to rank the different algorithms based on their performance metrics. The evaluation results
demonstrate that the considered algorithms can handle online classification operations with
various trade-offs and dominance relations with respect to their obtained performance. In
addition, the utilized multi-criteria decision analysis technique can efficiently rank various
algorithms and identify the most appropriate algorithms to augment workload orchestration.
Furthermore, the evaluation results show that the leveraging bagging algorithm, with an
extremely fast decision tree base estimator, is able to maintain marked online classification
performance and persistent competitive ranking among its counterparts for all datasets. Hence,
it can be considered a promising choice to reinforce workload orchestration in vehicular edge
computing environments.

Keywords: Online classification, Data stream, Performance, Ranking

Received: Feb. 3, 2021
Revised : Mar. 28, 2021
Accepted: Apr. 26, 2021

Correspondence to: Mutaz Al-Tarawneh
(mutaz.altarawneh@mutah.edu.jo)
©The Korean Institute of Intelligent Systems

cc©This is an Open Access article distrib-
uted under the terms of the Creative Com-
mons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc /
3.0/) which permits unrestricted non-
commercial use, distribution, and reproduc-
tion in any medium, provided the original
work is properly cited.

1. Introduction

In addition to the rapid development of artificial intelligence and data mining techniques,
Internet of Things (IoT) technology has transformed traditional transportation systems into
intelligent transportation systems (ITS) [1]. In the ITS paradigm, vehicles are equipped
with various types of processing, sensing, detection, and communication devices, leading
to more intelligent and connected vehicles. Therefore, a plethora of intelligent applications,
such as autonomous driving, smart navigation, and infotainment, has been developed [2–4].
However, these applications are computationally intensive, with processing requirements that
surpass the processing capacity of in-vehicle hardware resources. This discrepancy between
the application requirements and the computing power of the in-vehicle hardware resources
can hinder the development of ITS-centered applications [5]. To remedy this situation, cloud
computing has been employed within vehicular networks, and applications have been allowed
to utilize the powerful hardware resources of remote cloud data centers [6]. However, cloud

101 |

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

http://doi.org/10.5391/IJFIS.2021.21.2.101

data centers may incur very long transmission delays that violate
the extremely low latency requirements of some applications
in vehicular networks. To overcome this issue, vehicular edge
computing (VEC), which combines vehicular networks with
multi-access edge computing (MEC), has been proposed [7]. In
the VEC paradigm, several edge servers are deployed at the net-
work edge, providing adequate computing power to handle the
increasing processing requirements of in-vehicle applications.

Hence, VEC is considered a promising concept that provides
a baseline for various applications to enhance the quality of ser-
vice (QoS) based on computation offloading [8]. It can improve
the user’s quality of experience by offloading computational
tasks to the edge servers, which are expected to handle the pro-
cessing demand of vehicular applications. Thus, it can handle
delay-sensitive vehicular applications [9,10]. The envisioned
VEC scenarios encompass a dynamically changing process
characterized by an evolving stream of offloading requests gen-
erated from a diverse set of applications with varying processing
demands and delay requirements, an instantaneously changing
network state, and an oscillatory utilization and capacity of
the hardware resources of both edge and cloud servers [11].
In such a dynamic and heterogeneous environment, workload
orchestration plays a vital role in handling the incoming of-
floading requests generated from different applications and
deciding on the computational server to which each request
should be offloaded, considering the application characteristics,
network status, and utilization levels of both edge and cloud
hardware resources. Apparently, as the number of vehicles
and in-vehicle applications increases, the demand for the net-
working and hardware resources of the VEC system will also
increase. The increased demand for these resources will ulti-
mately lead to increased competition for resources, hindering
the decision-making process involved in the operation of work-
load orchestration [12]. Consequently, predicting the status
of hardware resources and their ability to successfully handle
offloaded requests is a challenging yet inevitable process. In
this regard, machine learning (ML) algorithms can provide ef-
ficient tools for making predictions in dynamically changing
environments [13]. The ultimate goal of the prediction process
is to help the workload orchestrator determine whether offload-
ing an incoming request to a particular server will eventually
succeed or fail. In other words, the prediction process asso-
ciated with workload orchestration is a binary classification
problem in which a class label is assigned to each incoming
offloading request. The class label will be set to either suc-
cess or failure. Whereas a success indicates that a particular

computational server is predicted to successfully handle the
offloaded request and deliver the execution results back to the
request source, a failure indicates that the offloading process
is expected to fail because of either vehicle mobility, network
congestion, or unavailability of processing resources. In this
context, the work in [13] is among the first efforts to propose an
ML-based workload orchestrator for VEC systems. They used
several classification algorithms and tested their ability to aid in
the workload orchestration process. However, they used these
algorithms in a batch-learning scheme. In this scheme, an ML
model is built under the assumption that the entire dataset (i.e.,
offloading requests) is available in memory. However, batch
learning schemes suffer from several limitations. First, the train-
ing phase may last for a long period and require a significant
amount of processing and memory resources. Second, the per-
formance of the trained model is sensitive to the training dataset
size. Third, in the batch learning scheme, the training data are
assumed to be static and do not change over time; once a model
is trained, it cannot acquire knowledge or experience from new
samples. In other words, when there is a change in the statistical
properties of the model’s input (i.e., concept drift), a new model
must be constructed [14]. Consequently, as the offloading re-
quests in VEC environments represent a continuous stream of
data, online data stream classification algorithms are viable
alternatives to offline (i.e., batch) classification algorithms in
VEC-based workload orchestration for several reasons. First,
online data stream classification algorithms are designed to han-
dle unbounded streams of data and incrementally learn from
incoming data; they must be continuously updated while mak-
ing predictions when required [15]. Second, online data stream
classification algorithms can be utilized in real-time applica-
tions that cannot be handled by classical (i.e., batch) learning
algorithms [16]. Third, they are able to detect concept drift,
allowing the trained models to continuously adapt and evolve
with dynamically changing data streams [17,18]. Therefore,
online data stream classification is perceived as a suitable tool
for workload orchestration in VEC systems, where the environ-
mental state and application behavior may change over time in
an unpredictable manner. Many algorithms for data stream clas-
sification have been proposed [19–21]. Although some of these
algorithms have been studied in multiple fields [16,22–25], the
evaluation of their performance and the trade-offs involved in
their performance metrics and memory costs have not been
addressed for VEC environments. Hence, this work seeks to
identify which online data stream classification algorithms may
be suitable for VEC environments through rigorous comparative

www.ijfis.org Data Stream Classification Algorithms for Workload Orchestration in Vehicular Edge Computing: A Comparative Evaluation | 102

International Journal of Fuzzy Logic and Intelligent Systems, vol. 21, no. 2, June 2021

evaluation. In addition, it aims to analyze the trade-offs asso-
ciated with key performance metrics, such as the algorithm’s
accuracy, precision, recall, kappa statistic, and memory require-
ments [26]. Typically, the evaluation of online data stream
classification algorithms involves multiple, typically conflicting
criteria. Hence, it can be modeled as a multi-criteria decision
analysis (MCDA) problem [27]. MCDA is a formal process that
can be employed in decision-making by allowing identification
of the alternatives, selection of the evaluation indicators (i.e.,
criteria), and aggregation of the obtained performance scores
under the considered performance evaluation criteria [28,29].
In this context, the composite indicators (CIs) are a family of
MCDA methods that can be used to assign scores to various
alternatives and rank them appropriately [30–32]. Hence, this
work employs a CI-based approach to rank various online data
stream classification algorithms based on their obtained perfor-
mance metrics. The experiments were carried out using several
online data stream classification algorithms (Section 2) based
on synthetically generated datasets. All tests were performed
using a scikit-multiflow evaluation platform [33]. The main
contributions of this study can be summarized as follows.

• Performing a rigorous evaluation of the performance of
several online data stream classification algorithms on
synthetic datasets generated from a simulated VEC envi-
ronment.

• Applying a MCDA technique to rank various algorithms
based on their observed performance trade-offs and dom-
inance relations.

• Identifying the most suitable algorithm or set of algo-
rithms to augment workload orchestration in VEC envi-
ronments.

The remainder of this paper is organized as follows. Section
2 briefly explains the online data stream classification algo-
rithms considered in this study. Section 3 describes the research
methodology and utilizes research tools. Section 4 presents
the results of the evaluation and trade-off analysis. Section 5
summarizes and concludes this paper.

2. Data Stream Classification

Traditionally, ML algorithms have been used to construct mod-
els based on static datasets. However, there is a growing need
for mechanisms capable of handling vast volumes of data that ar-
rive as streams. In this regard, new data samples can be obtained

at any time, and storing these data samples is inappropriate. On
the one hand, learning from continuous data streams requires
the ML model to be created and continuously updated through-
out the stream. On the other hand, it is important to address
concept drift, in which the statistical properties of the incoming
data change over time [34,35]. In addition, for VEC environ-
ments, the obtained ML model must be updated instantaneously,
requiring algorithms that can achieve adequate accuracy levels
under limited processing power and memory space [26]. In this
work, several data stream classification algorithms, with dis-
tinct model construction mechanisms, complexity, and memory
requirements, are considered. The algorithms are summarized
as follows.

2.1 Bayes Learning Algorithms

In this category, the naive Bayes (NB) algorithm was used [20].
The NB algorithm performs Bayesian prediction under the
assumption that all inputs, that is, features of the input data
samples, are independent. The NB algorithm is a simple clas-
sification algorithm with low processing requirements. Given
n different classes, the trained NB classifier predicts the class
to which it belongs with a high probability for every incoming
data sample.

2.2 Lazy Learning Algorithms

The most commonly used lazy data stream classification algo-
rithms are the k-nearest neighbors classifier (kNN) [36], kNN
classifier with adaptive windowing (kNN-ADWIN) change de-
tector,, and self-adjusting memory coupled with the kNN clas-
sifier (SAM-kNN) [37,38]. In the data stream setting, the kNN
algorithm operates by keeping track of a window with a fixed
number of recently observed training data samples. When a
new input data sample arrives, the kNN algorithm searches
within the recently stored samples and finds the closest neigh-
bors using a particular distance measure. Then, the class label
of the incoming data sample can be assigned accordingly. The
kNN-ADWIN classifier is an improvement over the regular
kNN classifier because of its resistance to concept drift. It em-
ploys the ADWIN change detector to determine which previous
data samples to keep and which ones to discard (i.e., forget),
which in turn regulates the sample window size. In addition,
the SAM-kNN is a refinement over the other two algorithms,
in which a SAM model constructs an ensemble of models tar-
geting either current or previous concepts. These dedicated
models can be applied according to the requirements of the

103 | Mutaz Al-Tarawneh

http://doi.org/10.5391/IJFIS.2021.21.2.101

current situation (i.e., concept). To accomplish this, the SAM
model constructs both short-term (STM) and long-term (LTM)
memories. Whereas the STM is built for the current concept,
the LTM is used to store information about previous concepts.
A cleaning process is then used to control the size of the STM
while maintaining consistency between the LTM and STM.

2.3 Tree-Based Learning Algorithms

Tree-based algorithms are widely used in data-stream classifica-
tion applications. In this study, three main tree-based algorithms
are used: the Hoeffding tree (HT) [39], Hoeffding adaptive tree
(HAT) [40], and extremely fast decision tree (EFDT) [41]. The
HT algorithm is an incremental, anytime decision tree induction
algorithm that has the ability to learn from massive online data
streams, assuming that the distribution generating the incoming
data samples is static and does not change over time. It relies on
the fact that a small set of input samples can often be sufficient
to select an optimal splitting attribute. This idea is mathemati-
cally supported by the Hoeffding bound, which quantifies the
number of input samples required to estimate some statistics
within a predefined precision. A theoretically attractive feature
of the HT algorithm that is not shared by other online decision
tree algorithms is that it has profound performance guarantees.
Relying on the Hoeffding bound, the output of an HT learner is
asymptotically nearly identical to that of a batch-based learner
using infinitely many input data samples. The HAT algorithm
utilizes the ADWIN change detector to monitor the performance
of different tree branches. The branches whose performance
decreases are replaced with new branches if the new branches
are more accurate. Furthermore, the EFDT classification al-
gorithm builds a tree in an incremental manner. It selects and
deploys a split once it is confident that the split is useful and
subsequently revisits that split decision, replacing it if it then
becomes evident that a more useful split is present. The EFDT
is able to learn quickly from static distributions and ultimately
learn the asymptotic batch tree if the distribution generating the
input data samples is stationary.

2.4 Rule-Based Learning Algorithms

The very fast decision rule (VFDR) is an online data stream
classification algorithm [42]. The learning process of the VFDR
algorithm is similar to that of the HT algorithm, but instead
utilizes a collection of rules instead of a tree. The ultimate
goal of VFDR is to create a collection of rules that constitute
a highly interpretable classifier. Each rule is represented as

a combination of conditions based on attribute values and a
structure for maintaining sufficient statistics. These statistics
are used to determine the class predicted by the associated rule
for incoming data samples.

2.5 Ensemble Learning Algorithms

In this study, several ensemble learning methods are evaluated.
These algorithms include Oza bagging (OB) [43], Oza bagging
with ADWIN change detector (OB-ADWIN) [43], leveraging
bagging (LB) [44], online synthetic minority oversampling
technique bagging (SMOTE-B) [45], online under-over bag-
ging (UO-B) [45], adaptive random forest (ARF) [46], and the
dynamic weighted majority classifier (DWMC) [47]. For in-
stance, OB is an online ensemble learning algorithm that can
be considered a refinement over traditional batch-based bag-
ging to handle incremental learning. For traditional batch-based
bagging, M classifiers are trained on M distinct datasets cre-
ated by drawing N samples from an N -sized training dataset
with replacement. In the online learning settings, as there is no
training dataset, but rather a stream of input data samples, the
drawing of input samples with replacements cannot be trivially
performed. The online OB mimics the training phase by using
each arriving input data sample to train the base estimator over
k times, which is drawn by the binomial distribution. Because
the input data stream can be assumed to be infinite, and given
that the binomial distribution tends to a Poisson (λ =1) distribu-
tion with infinite samples, [43] found the process adopted by the
online OB algorithm to be a good ‘drawing with replacement’.
OB-ADWIN is an improvement from the OB algorithm, where
the ADWIN change detector is employed. In addition, the LB
algorithm is based on the OB algorithm, in which a Poisson
distribution is used to simulate the re-sampling process. The
LB algorithm attempts to obtain better classification results by
modifying the parameters of the Poisson distribution obtained
from the binomial distribution when assuming an infinite input
data stream. Hence, the LB algorithm changes the λ parameter
of the Poisson distribution to six instead of one. The new value
of λ would lead to greater diversity in the input space by at-
tributing a different range of weights to the input data samples.
To achieve further improvement over the OB algorithm, the LB
uses output detection codes. In the detection codes, each class
label is coded using an n-bit-long binary code, and each bit is
associated with one of the n classifiers. As a new input data
sample is analyzed, each classifier is trained on its associated
bit. This assists the LB algorithm, to some extent, with error

www.ijfis.org Data Stream Classification Algorithms for Workload Orchestration in Vehicular Edge Computing: A Comparative Evaluation | 104

International Journal of Fuzzy Logic and Intelligent Systems, vol. 21, no. 2, June 2021

correction.
The ARF algorithm is an adaptation of the traditional batch-

based random forest algorithm applied to an online data stream
scope. In ARF, multiple decision trees are generated, and the
decision on how to classify each incoming data sample is made
through a weighted voting system. In the voting process, the
decision tree with the best performance (in terms of either
accuracy or the kappa statistic) receives a more substantial
weight in the voting process, that is, a higher priority in the
classification decision. The DWMC algorithm relies on four
mechanisms to handle concept drift: it first trains online base
learners of the ensemble; it then assigns weights to the base
learners depending on their performance, removes them based
on their performance, and adds new learners based on the global
performance of the whole ensemble.

In the UO-B and SMOTE-B algorithms, the basic idea is to
use existing algorithms for online ensemble-based learning and
combine them with batch-mode techniques for cost-sensitive
bagging. Such a combination is useful for classifying imbal-
anced data streams in which the vast majority of incoming data
samples belong to the same class. The UO-B and SMOTE-B al-
gorithms represent an adaptation of the UnderOverBagging and
SMTEBagging ensemble methods [48] for online data stream
settings. Given an imbalanced dataset with N samples, where
N+ samples come from the minority class S+ and N− sam-
ples from the majority class S−, batch bagging-based learning
algorithms rely on under-sampling (underbagging) the major-
ity class, over-sampling (overbagging) the minority class, or
UnderOverBagging, which is a uniform combination of both
underbagging and overbagging. Furthermore, the re-sampling
rate (a) varies over the bagging iterations, boosting the diversity
among the base learners. In SMOTEBagging, the majority class
is sampled with replacement at a rate of 100% (i.e., N− from
the majority class is generated), while CN+ samples from the
minority class are generated for each base learner, for some
C > 1, among which a% is generated by re-sampling, while the
rest of the samples are obtained by the SMOTE technique [49].
In the online data stream settings, where no dataset is available,
the sampling process is simulated by presenting each incoming
data sample to the base model over k times, where k is sampled
from a Poisson (λ) distribution. The value of the parameter λ
is chosen in a manner that allows an online bagging scheme to
mimic the behavior of its batch-based counterpart.

3. Research Tools and Methodology

3.1 VEC System Model

Figure 1 shows the system model assumed in this work. This
model is based on the work proposed in [13,50], where a model
and a simulation environment for a VEC system were proposed.
In this model, in-vehicle applications are assumed to periodi-
cally generate offloading requests for some computational tasks.
In this work, the workload orchestrator is assumed to offload the
current request (i.e., task) to either: (A) the road side unit (RSU)
via the wireless local area network (WLAN) that currently cov-
ers the offloading vehicle, (B) the cloud server through the RSU
- using the wide area network (WAN), or (C) the cloud server
via the cellular network (CN).

It is assumed that there are three main in-vehicle applica-
tion types. These applications and their corresponding tasks are
uniquely characterized by a set of parameters, as shown in Table
1. The usage percentage is the percentage of vehicles running
each application, task input file size is the mean size of the input
data required by the offloaded task, task output file size is the
average size of the output result generated after executing the
offloaded task, virtual machine (VM) utilization indicates the
percentage of the processing power consumed (i.e., utilized) by
the offloaded task, and the number of instructions per task repre-
sents the expected processing demand of the offloaded task. As
shown in Table 1, the characteristics of different applications
were chosen such that adequate diversification in their task of-
floading frequency, processing demand, and network bandwidth
requirements is achieved. Such a diverse set of applications will

WLAN

WAN

(A)

(B) (C)

 RSU

VEC Server

Cellular

Network

Cloud

Server

Figure 1. System model.

105 | Mutaz Al-Tarawneh

http://doi.org/10.5391/IJFIS.2021.21.2.101

Table 1. In-vehicle application characteristics

App-1 App-2 App-3

Usage percent 30 35 35

Task input file size (kB) 20 40 20

Task output file size (kB) 20 20 80

Task generation rate (per second) 0.3 0.2 0.07

Number of instructions per task (×109) 3 10 20

VM utilization on RSU (%) 6 20 40

VM Utilization on Cloud (%) 1.6 4 8

cause the simulated VEC environment to go through various
states that cover a wide range of computational server loading
and network bandwidth utilization levels.

3.2 Dataset Construction

To carry out a comparative evaluation between different data
stream classification algorithms, synthetic datasets were gen-
erated based on the simulation tool of [13]. The datasets were
created by simulating a VEC system with 2,400 vehicles and
application characteristics, as shown in Table 1. In addition,
the VEC simulation was accompanied by a hypothetical work-
load orchestrator that offloads the incoming requests according
to Table 2. Each entry in Table 2 represents the probability
that the orchestrator will make a particular decision for an
incoming offloading request. As shown, these probabilities
are application-dependent; for instance, there is a 0.60 prob-
ability of offloading tasks generated from App-1 to the VEC
server, as compared with probabilities of 0.30 and 0.23 for
App-2 and App-3, respectively. These offloading probabilities
were set to mimic a relatively realistic situation that aligns with
the application characteristics shown in Table 1. For instance,
both App-2 and App-3 are more computationally intensive than
App-1; they have a greater number of instructions per task. In
addition, the average input/output file size is higher than that
of App-1. Hence, they were assigned higher probabilities of
being offloaded to the resource-enriched cloud server via the
high-bandwidth WAN connection. Overall, the hypothetical
orchestration behavior shown in Table 2 was observed to gener-
ate synthetic datasets with an adequate number of success and
failure instances, leading to a more appropriate setting for eval-
uating the performance and discrimination ability of different
online data stream classification algorithms. For each offload-
ing request, a record-keeping process was performed. Record
keeping involves recording the VEC environmental state when

Table 2. Hypothetical orchestration probabilities

VEC server Cloud via RSU Cloud via CN

App-1 0.60 0.23 0.17

App-2 0.30 0.53 0.17

App-3 0.23 0.60 0.17

Table 3. VEC environment state variables per offloading decision

Variable Decision

Number of instructions per task All

Number of recently uploaded tasks All

Input file size (kB) All

Output file size (kB) All

Edge server utilization (%) VEC server

WLAN upload delay (ms) VEC server

WLAN download delay (ms) VEC server

WAN upload delay (ms) Cloud via RSU

WAN download delay (ms) Cloud via RSU

CN upload delay (ms) Cloud via CN

CN download delay (ms) Cloud via CN

the offloading decision is made, in addition to the offloading
outcome. The environmental state variables depend on the de-
cision made by the workload orchestrator, as shown in Table
3. The environmental state variables contain information about
application characteristics related to the offloaded task, average
utilization of the VMs instantiated on the VEC server, upload
and download delays associated with network connections used
for task offloading, and the number of tasks recently offloaded
to the selected server.

The offloading outcome is set to success if the task associ-
ated with the offloaded request is offloaded successfully and
its result is delivered to the request source. It is set to failure
if the execution result is not delivered successfully to the re-
questing vehicle. The failure of the offloading process may
be due to several reasons, such as high resource utilization of
the selected server, unavailability of network bandwidth, or
vehicle mobility. Ultimately, the records obtained during the
simulation process were used to create three different datasets,
with each dataset corresponding to one of the three possible
offloading decisions. These datasets are denoted as the Edge,
CloudRSU, and CloudCN datasets. Each dataset stores the
environmental state variables associated with each offloading
request, along with the offloading outcome. The stored entries
appear in chronological order. Table 4 lists some sample entries

www.ijfis.org Data Stream Classification Algorithms for Workload Orchestration in Vehicular Edge Computing: A Comparative Evaluation | 106

International Journal of Fuzzy Logic and Intelligent Systems, vol. 21, no. 2, June 2021

Table 4. Sample dataset entries

Edge dataset CloudRSU dataset CloudCN dataset
Success Failure Success Failure Success Failure

Number of instructions per task 3,057 3,178 9,531 19,242 3,196 9,598

Number of previously offloaded tasks 2 129 - - - -

Number of offloaded tasks - - 1 184 1 92

Input file size 19 21 21 88 19 21

Output file size 18 21 42 22 20 36

Edge server utilization 25 20.9 - - -

WLAN upload delay 23.02 84.45 - - -

WLAN download delay 36.20 28.44 - - -

WAN upload delay - - 6.18 16.30 - -

WAN download delay - - 12.07 55.65 - -

CN upload delay - - - - 21.65 8

CN download delay - - - - 68.6 20.2

in the constructed datasets.

3.3 Evaluation Methodology

This section explains the main steps implemented to evaluate
the performance of the considered data stream classification
algorithms on the obtained datasets. Figure 2 depicts the eval-
uation procedure followed by the scikit-multiflow evaluation
platform [33].

This evaluation procedure was performed for every data
steam classification algorithm for each of the obtained datasets.
As shown in Figure 2, the dataset is first loaded as a stream
and then passed to the instantiated classification algorithm for
online testing, incremental learning, and evaluation. In the eval-
uation platform, the instances contained in the obtained stream
maintain their chronological order captured from the simulated
VEC environment. In addition, each instance contains a copy of
the dynamic state (i.e., application characteristics, designated
server utilization, and network status) of the VEC environment
upon making the orchestration decision. As a result, each tested
algorithm in the evaluation platform is exposed to state vari-
ables that capture the state of the simulated VEC environment
when making a classification decision. In this study, the classifi-
cation algorithms were evaluated using a prequential evaluation
method or the interleaved test-then-train method. The prequen-
tial evaluation method is designed specifically for online data
stream settings, in the sense that each incoming input data
sample (i.e., instance) serves two purposes, and those input

Start

Load		the	dataset	as	a	stream

Instantiate	the	classification
algorithm

Setup		the		performance
evaluator	

Is	stream	finished		?

Append	the	stream	and		the
classification	algorithm	to	the

performance	evaluator	

Test	the	classifier	on	the
current	instance	

Update	performance
statistics

Update	the	classification
algorithm

End

No

Yes

Figure 2. Evaluation flowchart.

107 | Mutaz Al-Tarawneh

http://doi.org/10.5391/IJFIS.2021.21.2.101

instances are analyzed sequentially, in order of their arrival,
and become immediately inaccessible. In this method, each
incoming data sample is first used to test the classification al-
gorithm (i.e., to make a prediction), after which the same input
sample is used to train the classification algorithm. The con-
sidered performance metrics are incrementally updated after
each observed instance, allowing a continuous update of the
performance of each tested algorithm in addition to real-time
tracking of its adaptability to unseen instances. Hence, the
classification algorithm is always tested, and its performance
metrics are updated on input data samples that have not yet
been seen. The performance of the classification algorithms is
quantified in terms of a number of widely used performance
measures, including accuracy, precision, recall, F-score, kappa
statistic, and memory size of the ML model obtained online.
These measures are defined as follows:

• Classification accuracy: the percentage of correctly clas-
sified input samples.

Accuracy =
TN + TP

TP + FP + FN + TN
, (1)

where TP, TN, FP, and FN denote true positive, true neg-
ative, false positive, and false negative, respectively. TP
is the number of correctly classified positive (i.e., suc-
cessful) input instances. TN is the number of correctly
classified negative instances (i.e., failure). FP is the num-
ber of positive instances that are misclassified as negative.
FN is the number of negative instances that are misclassi-
fied as positive.

• Precision: measures the number of positive class predic-
tions that actually belong to the positive class.

Precision =
TP

TP + FP
. (2)

• Recall: quantifies the number of positive class predic-
tions made out of all positive instances in the observed
stream.

Recall =
TP

TP + FN
. (3)

• F-score: is the harmonic mean of precision and recall.

F − score = 2× Precision×Recall
Precision+Recall

. (4)

• Kappa statistic (κ): is a robust classification accuracy

measure that takes into account the probability of agree-
ment by chance, indicating an improvement over a major-
ity class classifier, which predicts all incoming samples
fall in the majority class [51]. It plays a crucial role in
evaluating classification accuracy, especially for imbal-
anced data streams.

κ =
p0 − pc
1− pc

, (5)

where p0 is the prequential accuracy of the classifier
and pc is the probability that a chance classifier makes
a correct prediction [52]. If κ = 1, the classification
algorithm is always correct.

• Model size: is a measure of the memory space occu-
pied by the classification model obtained throughout the
prequential evaluation process.

Typically, the online classification of data streams does not
have a single optimal solution (i.e., algorithm) that optimizes
all of the involved performance metrics, but rather a plethora of
possible solutions with noticeable trade-offs between different
performance metrics. For such scenarios, the notion of opti-
mality is captured through Pareto Optimalty, which considers
an algorithm to be inferior or superior to another algorithm
only if it is inferior in all metrics or superior in all metrics.
The trade-offs in the algorithm selection process are captured
by algorithms that are superior with respect to some metrics
but inferior in other metrics. Such pairs of algorithms that
are both superior and inferior with respect to certain metrics
are called non-dominated and form the Pareto front of the algo-
rithm performance optimization problem [53]. Hence, this work
identifies, for each potential dataset, the set of non-dominated
algorithms (SNDA) based on the obtained performance metrics.
Having obtained the SNDA, a CI-based MCDA procedure is
followed to assign scores and ranks to the various algorithms.
The main steps followed by the CI-based procedure are shown
in Figure 3. First, a set of non-dominated algorithms was used
to construct a performance matrix (SNDA matrix).

The rows of the matrix represent the alternatives (i.e., algo-
rithms), whereas the columns indicate the performance of these
algorithms under each performance metric or indicator. Second,
performance metrics are assigned weights that can be consid-
ered trade-off coefficients, meaning that they represent the de-
crease in indicator (x) that can be compensated for by another
indicator (y). Third, the performance matrix was normalized
using one of the eight possible normalization techniques. The

www.ijfis.org Data Stream Classification Algorithms for Workload Orchestration in Vehicular Edge Computing: A Comparative Evaluation | 108

International Journal of Fuzzy Logic and Intelligent Systems, vol. 21, no. 2, June 2021

Start

Input the SNDA

matrix

Assign weights to

performance metrics

Choose a normalization

method to normalize the

 SNDA matrix

Assign a score to each

algorithm under each

performance metric

Use an aggregation

function to aggregate the

scores of each algorithm

Rank algorithms based

on their aggregate scores

End

Figure 3. CI MCDA flowchart.

normalization techniques include the rank, percentile rank, stan-
dardized, min-max, logistic, categorical (-1,0,1), categorical
(0.1,0.2,0.4,0.6,0.8,1), and target methods [29]. The outcome of
the CI-based procedure can ultimately weigh or rank the SNDA
and identify which algorithms are best suited for the classifi-
cation problem in question. The normalization step helps in
putting all performance indicators on the same scale and assign-
ing a score to each alternative with respect to its counterparts.
Fourth, the scores assigned after the normalized process are
combined using a particular aggregation function to generate
an index for each alternative (i.e., algorithm). These aggrega-
tion functions include additive, geometric, harmonic, minimum,
and median functions [29]. Fifth, indices assigned to different
algorithms are used to assign ranks to these algorithms. The
ranks are in the range of 1 (best rank) to n (worst rank), where
n is the number of elements in the SNDA. In this work, the
steps outlined in the flowchart are performed for each possi-
ble combination of normalization and aggregation methods.
Hence, an algorithm may be assigned different ranks under
different combinations. To combine the results obtained under
different combinations of normalization and aggregation, a rank

frequency metric (rfm) is defined as shown in Eq. 6.

rfmA−i =
nranki

ncombinations
× 100%, (6)

where rfmA−i is the rank frequency metric of algorithm A,
which shows the proportion of indices that rank algorithm A in
the ith position, nranki

is the number of times the algorithm A

is chosen for the ith rank, and ncombinations is the number of
possible combinations of normalization and aggregation under
which algorithm A is ranked.

4. Results and Analysis

4.1 Edge Dataset Results

Table 5 summarizes the performance of the considered online
data stream classification algorithms on a stream generated
based on the Edge dataset, in terms of accuracy, precision, re-
call, F-score, kappa and the model size. The generated stream
consisted of 25,000 samples with 17,333 and 7,667 success and
failure instances, respectively. All algorithms were tested using
their default set of parameters defined in the scikit-multiflow
evaluation platform [33]. In addition, the ensemble-based algo-
rithms were further tested on different sets of base estimators.
For instance, the default base estimator for the LB algorithm is
the kNN classifier.

However, it was also tested in other configurations, where
its base estimator is set to either HT (LB+HT), HAT (LB+HAT),
ARF (LB+ARF), EFDT (LB+EFDT), or VFDRC (LB+VFDRC).
Similarly, the previous statement applies to all other ensemble-
based algorithms. As shown, the considered algorithms exhib-
ited different performance values under the metrics used. In
addition, no single algorithm surpasses all other algorithms
in terms of all the performance metrics. In this regard, the
LB + ARF ensemble algorithm achieved the highest accuracy,
precision, F-score, and kappa values, while the NB algorithm
outperformed other algorithms in terms of recall and model size
metrics. Figure 4 shows a box plot of the obtained performance
values for each metric. It visualizes the degree of variation
between the algorithms for each performance metric.

In general, the algorithms vary widely in terms of their kappa
statistics. In addition, the considered algorithms achieved better
precision, recall, and F-score compared with their accuracy
values. Apparently, the class imbalance observed in the Edge
dataset (i.e., stream) has a direct consequence on the perfor-
mance of the classification algorithms; only those algorithms
capable of handling class imbalance and concept drift achieved

109 | Mutaz Al-Tarawneh

http://doi.org/10.5391/IJFIS.2021.21.2.101

Table 5. Performance comparison on the Edge dataset

Algorithm Accuracy Precision Recall F-score Kappa Model size (kB)

NB 0.6748 0.6763 0.9857 0.8022 0.0419 12
KNN 0.6875 0.7486 0.8022 0.7745 0.2675 502

kNNADWIN 0.6875 0.7487 0.8021 0.7745 0.2675 513

SAM-KNN 0.7468 0.7788 0.8681 0.8210 0.3927 981137

VFDRC 0.7199 0.7697 0.8296 0.7985 0.3413 81

HT 0.7393 0.7655 0.8798 0.8187 0.3627 145

HAT 0.7964 0.8252 0.8826 0.8529 0.5233 102

EFDT 0.7936 0.8371 0.8511 0.8440 0.5385 361

ARF 0.8991 0.9169 0.9333 0.9250 0.7707 1502

DWMC 0.7794 0.8149 0.8671 0.8402 0.4849 60

LB 0.7241 0.8047 0.762 0.7828 0.4054 4857

SMOTE-B 0.6727 0.8035 0.6604 0.7250 0.3302 60337

UO-B 0.7109 0.7123 0.9374 0.8095 0.2542 3453

OB 0.6872 0.7449 0.7946 0.7689 0.2864 4446

OB-ADWIN 0.6961 0.7542 0.7954 0.7743 0.3106 4440

LB+HT 0.9173 0.9302 0.9519 0.9409 0.8031 1069

LB+HAT 0.9304 0.9415 0.959 0.9502 0.8349 1037

LB+ARF 0.9380 0.9552 0.9552 0.9552 0.8595 24580

LB+EFDT 0.9326 0.9469 0.9562 0.9515 0.8409 2063

LB+VFDRC 0.9161 0.9305 0.9494 0.9399 0.8005 756

DWMC+HT 0.8412 0.871 0.9046 0.8875 0.6183 163

DWMC+HAT 0.853 0.884 0.9066 0.8952 0.6495 288

DWMC+ARF 0.9201 0.9393 0.9457 0.9425 0.8117 7581

DWMC+EFDT 0.87 0.8903 0.9264 0.9080 0.6871 444

DWMC+VFDRC 0.8309 0.8789 0.8765 0.8777 0.604 114

SMOTE-B + HT 0.7981 0.8791 0.8212 0.8492 0.5449 56153

SMOTE-B + HAT 0.8249 0.8951 0.8462 0.8700 0.6027 56311

SMOTE-B + ARF 0.8816 0.9247 0.9024 0.9134 0.7262 80722

SMOTE-B + EFDT 0.8565 0.9081 0.882 0.8949 0.6693 56513

SMOTE-B + FDRC 0.7893 0.8609 0.8295 0.8449 0.5166 56147

UO-B + HT 0.7872 0.7727 0.9787 0.8636 0.4018 371

UO-B + HAT 0.8231 0.8876 0.8524 0.8696 0.5949 56278

UO-B + ARF 0.88 0.9234 0.9014 0.9123 0.7227 81812

UO-B + EFDT 0.8118 0.7959 0.9792 0.8781 0.4844 926

UO-B + VFDRC 0.7973 0.7909 0.9612 0.8678 0.4505 418

OB + HT 0.7874 0.8116 0.9022 0.8545 0.4638 1661

OB + HAT 0.8448 0.8579 0.9297 0.8924 0.6158 746

OB + ARF 0.8406 0.8907 0.8774 0.8840 0.6295 11315

OB + EFDT 0.8151 0.8427 0.9011 0.8709 0.5467 3267

OB + VFDRC 0.779 0.7964 0.9145 0.8514 0.4286 872

OB-ADWIN+HT 0.83 0.851 0.9144 0.8816 0.5816 693

OB-ADWIN+HAT 0.8542 0.8676 0.9315 0.8984 0.6415 567

www.ijfis.org Data Stream Classification Algorithms for Workload Orchestration in Vehicular Edge Computing: A Comparative Evaluation | 110

International Journal of Fuzzy Logic and Intelligent Systems, vol. 21, no. 2, June 2021

Table 5. Continued

Algorithm Accuracy Precision Recall F-score Kappa Model size (kB)

OB-ADWIN+ARF 0.902 0.9198 0.9404 0.9300 0.7667 15946

OB-ADWIN+EFDT 0.8604 0.8793 0.9254 0.9018 0.6615 816

OB-ADWIN+VFDRC 0.8221 0.8417 0.9151 0.8769 0.5585 556

Figure 4. Box plot of performance metrics on the Edge dataset.

relatively higher performance compared with other algorithms.
Specifically, the ARF algorithm and other ensemble algorithms
whose base estimator is set to either HT, HAT, ARF, EFDT, or
VFDRC have relatively better performance metrics compared
with all other algorithms.

In Figure 4, the model size score (MSS) is computed accord-
ing to Eq. 7.

MSSi = 1− MSi −MSmin

MSmax −MSmin
, (7)

where MSSi is the score assigned to algorithm i, MSi is the
model size under the ith algorithm, and MSmin and MSmax

are the minimum and maximum model sizes, respectively. The
formula given in Eq. 7 normalizes the model size and converts
it into an ascending attribute that favors algorithms with lower
model sizes. It also puts the model size on the same scale as
the other performance metrics. As shown in Figure 4, the vast
majority of classification algorithms achieved higher model size
scores (i.e., low model sizes as compared with other algorithms).
Nevertheless, there are few algorithms that have significantly
higher model sizes (i.e., low model size scores).

Because there is no single algorithm that is superior in all
performance metrics, but rather a set of algorithms in which
some of them are superior in some metrics and inferior in other
metrics, it is important to identify the SNDA. Table 6 shows

L
B
+
A
R
F

L
B
+
E
F
D
T

L
B
+
H
A
T

L
B
+
H
T

L
B
+
V
F
D
R
C

D
W
M
C
+
E
F
D
T

O
B
-A
D
W
IN
+
H
A
T

O
B
+
H
A
T

0

50

100

Algorithm

R
a
n

k
 f

re
q

u
en

cy
 m

et
ri

c
(%

)

rfmA-1 rfmA-2 rfmA-3 rfmA-i-≥4

Figure 5. Algorithm ranking for the Edge dataset.

the SNDA for the Edge dataset classification, along with their
performance metrics.

As shown in Table 6, this set consists of 25 algorithms with
various trade-offs between the performance metrics considered.
To determine the most viable options (i.e., algorithms) for the
edge data stream, the information shown in Table 6 was fed
to the CI-based MCDA process to obtain the rank frequency
metric (rfm) for each algorithm in the SNDA of the edge data
stream. Figure 5 shows the rfm values associated with various
algorithms from the SNDA of the edge data stream. The results
are shown for those algorithms that have been ranked at least
once in the first three ranks (i.e., algorithms with non-zero val-
ues for their rfmA−1, rfmA−2, or rfmA−3). As depicted in
Figure 5, the LB+ARF, LB+EFDT, and LB+HAT algorithms
have higher values for rfmA−1, rfmA−2, and rfmA−3 than
do their counterparts. In other words, they always compete for
the first three ranks among the various combinations of nor-
malization and aggregation methods. Apparently, the LB+ARF
algorithm occupied the first rank for the majority of combina-
tions and could be considered the most promising choice for
the edge data stream classification problem. Conversely, the

111 | Mutaz Al-Tarawneh

http://doi.org/10.5391/IJFIS.2021.21.2.101

Table 6. Non-dominated set of algorithms for the Edge dataset

Algorithm Accuracy Kappa Precision Recall F-score Model size score

NB 0.6748 0.0419 0.6763 0.9857 0.8022 1

kNN 0.6875 0.2675 0.7486 0.8022 0.7745 0.9995

kNN-ADWIN 0.6875 0.2675 0.7487 0.8021 0.7745 0.9995

SAMkNN 0.7468 0.3927 0.7788 0.8681 0.821 0

VFDRC 0.7199 0.3413 0.7697 0.8296 0.7985 0.9999

HT 0.7393 0.3627 0.7655 0.8798 0.8187 0.9999

HAT 0.7964 0.5233 0.8252 0.8826 0.8529 0.9999

EFDT 0.7936 0.5385 0.8371 0.8511 0.844 0.9996

ARF 0.8991 0.7707 0.9169 0.9333 0.925 0.9985

DWMC 0.7794 0.4849 0.8149 0.8671 0.8402 1

UO-B 0.7109 0.2542 0.7123 0.9374 0.8095 0.9965

LB+HT 0.9173 0.8031 0.9302 0.9519 0.9409 0.9989

LB+HAT 0.9304 0.8349 0.9415 0.959 0.9502 0.999

LB+ARF 0.938 0.8595 0.9552 0.9552 0.9552 0.975

LB+EFDT 0.9326 0.8409 0.9469 0.9562 0.9515 0.9979

LB+VFDRC 0.9161 0.8005 0.9305 0.9494 0.9399 0.9992

DWMC+HT 0.8412 0.6183 0.871 0.9046 0.8875 0.9998

DWMC+HAT 0.853 0.6495 0.884 0.9066 0.8952 0.9997

DWMC+EFDT 0.87 0.6871 0.8903 0.9264 0.908 0.9996

DWMC+VFDRC 0.8309 0.604 0.8789 0.8765 0.8777 0.9999

UB-O+HT 0.7872 0.4018 0.7727 0.9787 0.8636 0.9996

UB-O+EFDT 0.8118 0.4844 0.7959 0.9792 0.8781 0.9991

UB-O+VFDRC 0.7973 0.4505 0.7909 0.9612 0.8678 0.9996

OB+HAT 0.8448 0.6158 0.8579 0.9297 0.8924 0.9993

OB-ADWIN + HAT 0.8542 0.6415 0.8676 0.9315 0.8984 0.9994

LB+HT, LB+VFDRC, DWMC+EFDT, OB-ADWIN+HAT, and
OB-HAT algorithms occupied ranks that were equal to or worse
than the fourth rank for a large portion of normalization and
aggregation combinations.

4.2 Cloud via RSU Dataset Results

This section presents the performance metrics of the vari-
ous data stream classification algorithms on a stream generated
based on the CloudRSU dataset. The generated stream consists
of 25,000 samples with 17,961 and 7,039 success and failure
instances, respectively. Table 7 shows the accuracy, precision,
recall, F-score, kappa, and model size metrics for the differ-
ent algorithms. The algorithms obtained different performance
values under the considered metrics. Similar to the edge data
stream, there is no single algorithm that surpasses other algo-

rithms in terms of all performance metrics. In this regard, the
LB+ARF algorithm achieved the highest accuracy, F-score, and
kappa values, while the LB-EFDT achieved the highest preci-
sion value, while the UB-O and NB algorithms achieved the
highest recall and model size values, respectively. Figure 6
shows a box plot of the obtained performance metrics for the
various algorithms. The vast majority of algorithms have com-
parable performance metrics, with the kappa statistic having
generally lower values compared with other metrics.

Although the majority of the considered algorithms, espe-
cially the ensemble-based ones, have comparable performance
metrics, there is no single algorithm that surpasses all other
algorithms with respect to the considered metrics. Hence, it is
necessary to analyze the dominance relationship between these
algorithms and identify a SNDA. Table 8 lists the SNDA for
the stream generated from the CloudRSU dataset. This set con-

www.ijfis.org Data Stream Classification Algorithms for Workload Orchestration in Vehicular Edge Computing: A Comparative Evaluation | 112

International Journal of Fuzzy Logic and Intelligent Systems, vol. 21, no. 2, June 2021

Table 7. Performance comparison on the CloudRSU dataset

Algorithm Accuracy Precision Recall F-score Kappa Model size (kB)

NB 0.9095 0.9334 0.9409 0.9371 0.7754 11
KNN 0.6980 0.7522 0.8634 0.8040 0.1599 463

kNN-ADWIN 0.6952 0.7530 0.8557 0.8011 0.1604 474

SAM-KNN 0.7525 0.7781 0.9162 0.8415 0.2934 980406

VFDRC 0.9087 0.9475 0.9239 0.9356 0.7791 54

HT 0.9267 0.9456 0.9525 0.9490 0.8182 152

HAT 0.9238 0.9347 0.9609 0.9476 0.8080 72

EFDT 0.9298 0.9575 0.9441 0.9508 0.8288 143

ARF 0.9522 0.9631 0.9705 0.9668 0.8814 1572

DWMC 0.9253 0.9418 0.9548 0.9483 0.8137 52

LB 0.7205 0.8062 0.8035 0.8048 0.3127 4467

SMOTE-B 0.6543 0.7811 0.7189 0.7487 0.1961 55935

UO-B 0.7264 0.7325 0.9745 0.8363 0.0958 3129

OB 0.6952 0.7505 0.8616 0.8022 0.1519 4456

OB-ADWIN 0.7145 0.7658 0.8671 0.8133 0.2164 3844

LB+HT 0.9467 0.9611 0.9660 0.9635 0.8702 1179

LB+HAT 0.9540 0.9690 0.9669 0.9679 0.8868 430

LB+ARF 0.9614 0.9726 0.9737 0.9731 0.9049 18477

LB+EFDT 0.9599 0.9743 0.9697 0.9720 0.9015 1467

LB+VFDRC 0.9488 0.9650 0.9636 0.9643 0.8739 448

DWMC+HT 0.9349 0.9498 0.9610 0.9554 0.8378 110

DWMC+HAT 0.9380 0.9498 0.9646 0.9571 0.8453 234

DWMC+ARF 0.9561 0.9674 0.9716 0.9695 0.8915 5115

DWMC+EFDT 0.9416 0.9552 0.9638 0.9595 0.8549 167

DWMC+VFDRC 0.9186 0.9548 0.9305 0.9425 0.8031 135

SMOTE-B+HT 0.9282 0.9458 0.9546 0.9502 0.8218 52406

SMOTE-B+HAT 0.9251 0.9433 0.9528 0.9480 0.8139 52585

SMOTE-B+ARF 0.9517 0.9665 0.9662 0.9663 0.8810 69819

SMOTE-B+EFDT 0.9392 0.9539 0.9618 0.9578 0.8492 52699

SMOTE-B+VFDRC 0.9151 0.9510 0.9295 0.9401 0.7941 52373

UO-B + HT 0.9269 0.9325 0.9681 0.9500 0.8142 388

UO-B + HAT 0.9288 0.9349 0.9680 0.9512 0.8194 554

UO-B + ARF 0.9446 0.9498 0.9742 0.9618 0.8607 15765

UO-B + EFDT 0.9320 0.9392 0.9679 0.9533 0.8282 517

UO-B + VFDRC 0.9257 0.9378 0.9600 0.9488 0.8133 322

OB + HT 0.9262 0.9348 0.9601 0.9473 0.8184 1322

OB + HAT 0.9252 0.9362 0.9612 0.9485 0.8118 647

OB + ARF 0.9613 0.9613 0.9700 0.9656 0.8770 17768

OB + EFDT 0.9416 0.9568 0.9619 0.9593 0.8553 1514

OB + VFDRC 0.9182 0.9478 0.9376 0.9427 0.7998 827

OB-ADWIN+HT 0.9247 0.9366 0.9600 0.9482 0.8107 399

113 | Mutaz Al-Tarawneh

http://doi.org/10.5391/IJFIS.2021.21.2.101

Table 7. Continued

Algorithm Accuracy Precision Recall F-score Kappa Model size (kB)

OB-ADWIN+HAT 0.9246 0.9355 0.9611 0.9481 0.8100 648

OB-ADWIN+ARF 0.9516 0.9633 0.9695 0.9664 0.8802 19609

OB-ADWIN+EFDT 0.9374 0.9515 0.9618 0.9566 0.8444 645

OB-ADWIN+VFDRC 0.9241 0.9471 0.9471 0.9471 0.8128 312

Figure 6. Box plot of performance metrics on the CloudRSU dataset.

L
B
 +

 E
F
D

T

L
B
 +

 H
A
T

A
R
F

L
B
+
H

T

D
W

M
C
 +

 A
R
F

D
W

M
C
+
E
F
D

T

D
W

M
C
 +

 H
A
T

D
M

C
T
 +

 H
T

U
B
-O

 +
 E

F
D

T

U
B
-O

 +
 H

A
T

U
O

-B
 +

 H
T

H
A
T

L
B
 +

 A
R
F

D
W

M
C

H
T

0

50

100

Algorithm

R
a
n

k
 f

re
q

u
en

cy
 m

et
ri

c
(%

)

rfmA-1 rfmA-2 rfmA-3 rfmA-i-≥4

Figure 7. Algorithms ranking for the CloudRSU dataset.

tains 22 algorithms. This set was then used to obtain the rank
performance metrics, as shown in Figure 7. The results are for
those algorithms that have occupied one of the first three ranks
at least once under all possible combinations of normalization
and aggregation methods.

The results shown in Figure 7 illustrate that the LB+EFDT,
LB+HAT, and ARF algorithms dominate other algorithms in

terms of the number of times they occupy one of the top three
ranks. Evidently, the LB+EFDT algorithm ranks robustly within
the first three ranks, with a high share of combinations assigning
it to the first rank. Hence, it can be considered a suitable data
stream classification algorithm for streams generated from the
CloudRSU dataset.

4.3 Cloud via CN Dataset Results

This section presents the results obtained for the various algo-
rithms on the data stream generated from the CloudCN dataset.
Similar to the other two cases, the generated stream consisted of
25,000 instances. The number of success and failure instances
in this stream were 16,188 and 8,812, respectively. Table 9
summarizes the performance metrics obtained using the studied
algorithms. As shown, the algorithms vary in terms of their
obtained performance values with no single algorithm domi-
nating the others in all metrics. The LB+ARF, LB+EFDT, and
NB algorithms achieved the highest accuracy, precision, recall,
F-score, kappa, and model size, respectively.

Figure 8 shows the variability observed among the algorithms
with respect to all performance metrics. As depicted, a large
portion of the considered algorithms have very similar perfor-
mance values. In addition, the values obtained under the kappa
statistic are lower than those of the other metrics. The results of

Figure 8. Box plot of performance metrics on the CloudCN dataset.

www.ijfis.org Data Stream Classification Algorithms for Workload Orchestration in Vehicular Edge Computing: A Comparative Evaluation | 114

International Journal of Fuzzy Logic and Intelligent Systems, vol. 21, no. 2, June 2021

Table 8. Non-dominated set of algorithms for the CloudRSU dataset

Algorithm Accuracy Kappa Precision Recall F-score Model size score

NB 0.9095 0.7754 0.9334 0.9409 0.9371 1

VFDRC 0.9087 0.7791 0.9475 0.9239 0.9356 0.999956283

HT 0.9267 0.8182 0.9456 0.9525 0.9490 0.999855844

HAT 0.9238 0.808 0.9347 0.9609 0.9476 0.999937923

EFDT 0.9298 0.8288 0.9575 0.9441 0.9508 0.999865371

ARF 0.9522 0.8814 0.9631 0.9705 0.9668 0.998408233

DWMC 0.9253 0.8137 0.9418 0.9548 0.9483 0.999957844

UO-B 0.7264 0.0958 0.7325 0.9745 0.8363 0.996819955

LB + HT 0.9467 0.8702 0.9611 0.966 0.9635 0.998808409

LB + HAT 0.954 0.8868 0.969 0.9669 0.9679 0.999572642

LB + ARF 0.9614 0.9049 0.9726 0.9737 0.9731 0.981164191

LB + EFDT 0.9599 0.9015 0.9743 0.9697 0.9720 0.998514415

DMCT + HT 0.9349 0.8378 0.9498 0.961 0.9554 0.999899143

DWMC + HAT 0.938 0.8453 0.9498 0.9646 0.9571 0.999772316

DWMC + ARF 0.9561 0.8915 0.9674 0.9716 0.9695 0.994794179

DWMC + EFDT 0.9416 0.8549 0.9552 0.9638 0.9595 0.999840483

DWMC + VFDRC 0.9186 0.8031 0.9548 0.9305 0.9425 0.999873969

UO-B + HT 0.9269 0.8142 0.9325 0.9681 0.9500 0.999615492

UB-O + HAT 0.9288 0.8194 0.9349 0.968 0.9512 0.999446182

UB-O + ARF 0.9446 0.8607 0.9498 0.9742 0.9618 0.983930994

UB-O + EFDT 0.932 0.8282 0.9392 0.9679 0.9533 0.999483728

OB + ARF 0.9613 0.877 0.9613 0.97 0.9656 0.981887726

the algorithm dominance are shown in Table 10. As illustrated,
the SNDA for the considered stream consists of 23 algorithms
with various trade-offs between performance metrics.

Figure 9 shows the ranking results obtained by feeding the
information given in Table 10 to the CI-based MCDA procedure.
It considers only algorithms with non-zero values of rfmA−1,
rfmA−2, or rfmA−3. The results depicted in Figure 9 show
that the LB+VFDRC, LB+HT, and LB+EFDT surpass all other
algorithms with respect to their rank frequency metric. While
the LB+EFDT ensemble-based algorithm is assigned to the
first rank for a larger number of combinations as compared to
the LB+VFDRC, the latter is never assigned to a rank worse
than third under all combinations of normalization and aggre-
gation. In addition, the LB+HT and LB+EFDT algorithms
occupied ranking positions worse than or equal to the fourth
rank for a noticeable portion of scoring and ranking combina-
tions. Moreover, algorithms other than the best three algorithms
were allocated the fourth or worse ranks for a relatively large
number of combinations, hindering their potential applicability

L
B
+
V

F
D

R
C

L
B
+
H

T

L
B
+
E
F
D

T

L
B
+
H

A
T

A
R
F

O
B
-A

D
W

IN
+
H

T

D
W

M
C
+
H

A
T

D
W

M
C
+
A

R
F

U
B
-O

+
H

A
T

D
W

M
C
+
E
F
D

T

U
B
-O

+
V

F
D

R
C

U
O

-B
 +

 H
T

D
W

M
C
+
H

T

L
B
 +

 A
R
F

H
A
T

H
T

D
W

M
C
+
V

F
D

R
C

E
F
D

T

U
B
-O

+
A

R
F

0

50

100

Algorithm

R
a
n

k
 f

re
q

u
en

cy
 m

et
ri

c
(%

)

rfmA-1 rfmA-2 rfmA-3 rfmA-i-≥4

Figure 9. Algorithm ranking for the CloudCN dataset.

to the considered online data stream classification task.

In summary, the results shown in Tables 6, 8, and 10 illustrate

115 | Mutaz Al-Tarawneh

http://doi.org/10.5391/IJFIS.2021.21.2.101

Table 9. Performance comparison on the CloudCN dataset

Algorithm Accuracy Precision Recall F-score Kappa Model size (kB)

NB 0.8969 0.9156 0.9258 0.9207 0.7736 11
KNN 0.7236 0.7415 0.8784 0.8042 0.3456 445

kNN-ADWIN 0.7214 0.7408 0.8749 0.8023 0.3415 452

SAMKNN 0.7084 0.7349 0.8585 0.7919 0.3149 979425

VFDRC 0.8961 0.9310 0.9063 0.9185 0.7752 102

HT 0.9194 0.9176 0.9616 0.9391 0.8202 115

HAT 0.9224 0.9254 0.9570 0.9409 0.8279 86

EFDT 0.9203 0.9270 0.9515 0.9391 0.8238 156

ARF 0.9420 0.9381 0.9746 0.9560 0.8712 880

DWMC 0.9017 0.9111 0.9396 0.9251 0.7823 52

LB 0.7205 0.8062 0.8035 0.8048 0.3127 4467

SMOTE-B 0.6996 0.7761 0.7519 0.7638 0.3515 50811

UO-B 0.7051 0.6931 0.9755 0.8104 0.2246 4045

OB 0.7252 0.7434 0.8775 0.8049 0.3507 4465

OB-ADWIN 0.7306 0.7486 0.8777 0.8080 0.3656 3921

LB+HT 0.9462 0.9434 0.9753 0.9591 0.8807 711

LB+HAT 0.9455 0.9444 0.9730 0.9585 0.8793 704

LB+ARF 0.9581 0.9586 0.9774 0.9679 0.9077 11654

LB+EFDT 0.9581 0.9609 0.9749 0.9678 0.9078 2081

LB+VFDRC 0.9472 0.9462 0.9737 0.9598 0.8832 500

DWMC+HT 0.9288 0.9270 0.9659 0.9461 0.8416 198

DWMC+HAT 0.9330 0.9323 0.9666 0.9491 0.8513 360

DWMC+ARF 0.9449 0.9388 0.9786 0.9583 0.8775 4565

DWMC+EFDT 0.9323 0.9328 0.9648 0.9485 0.8499 417

DWMC+VFDRC 0.9232 0.9362 0.9455 0.9408 0.8313 161

SMOTE-B + HT 0.9263 0.9270 0.9617 0.9440 0.8363 47269

SMOTE-B +HAT 0.9336 0.9341 0.9653 0.9494 0.8528 47389

SMOTE-B +ARF 0.9402 0.9286 0.9709 0.9493 0.8673 62317

SMOTE-B +EFDT 0.9336 0.9324 0.9674 0.9496 0.8525 48022

SMOTE-B +FDRC 0.9273 0.9296 0.9603 0.9447 0.8389 47313

UO-B + HT 0.9269 0.9113 0.9824 0.9455 0.8348 281

UO-B + HAT 0.9308 0.9158 0.9833 0.9484 0.8439 656

UO-B + ARF 0.9306 0.9122 0.9877 0.9484 0.8429 16995

UO-B + EFDT 0.9300 0.9157 0.9821 0.9477 0.8422 668

UO-B + VFDRC 0.9301 0.9281 0.9667 0.9470 0.8445 346

OB + HT 0.9237 0.9153 0.9718 0.9427 0.8287 1138

OB + HAT 0.9329 0.9303 0.9688 0.9492 0.8508 753

OB + ARF 0.9375 0.9319 0.9745 0.9527 0.8606 14264

OB + FDT 0.9330 0.9301 0.9692 0.9492 0.8509 1980

OB + VFDRC 0.9179 0.9305 0.9433 0.9369 0.8194 823

OB-ADWIN+HT 0.9326 0.9267 0.9726 0.9491 0.8495 351

www.ijfis.org Data Stream Classification Algorithms for Workload Orchestration in Vehicular Edge Computing: A Comparative Evaluation | 116

International Journal of Fuzzy Logic and Intelligent Systems, vol. 21, no. 2, June 2021

Table 9. Continued

Algorithm Accuracy Precision Recall F-score Kappa Model size (kB)

OB-ADWIN+HAT 0.9344 0.9309 0.9705 0.9503 0.8540 703

OB-ADWIN+ARF 0.9383 0.9331 0.9743 0.9533 0.8625 12298

OB-ADWIN+EFDT 0.9345 0.9321 0.9693 0.9503 0.8545 689

OB-ADWIN+VFDRC 0.9291 0.9324 0.9598 0.9459 0.8431 452

Table 10. Non-dominated set of algorithms for the CloudCN dataset

Algorithm Accuracy Kappa Precision Recall F-score Model size score

NB 0.8969 0.7736 0.9156 0.9258 0.9207 1

VFDRC 0.8961 0.7752 0.931 0.9063 0.9185 0.999906689

HT 0.9194 0.8202 0.9176 0.9616 0.9391 0.999893732

HAT 0.9224 0.8279 0.9254 0.957 0.9409 0.999923127

EFDT 0.9203 0.8238 0.927 0.9515 0.9391 0.999851544

ARF 0.942 0.8712 0.9381 0.9746 0.9560 0.999113041

DWMC 0.9017 0.7823 0.9111 0.9396 0.9251 0.999957801

UB-O 0.7051 0.2246 0.6931 0.9755 0.8104 0.99588126

LB+HT 0.9462 0.8807 0.9434 0.9753 0.9591 0.999284837

LB+HAT 0.9455 0.8793 0.9444 0.973 0.9585 0.999292781

LB+ARF 0.9581 0.9077 0.9586 0.9774 0.9679 0.988112142

LB+EFDT 0.9581 0.9078 0.9609 0.9749 0.9678 0.997886041

LB+VFDRC 0.9472 0.8832 0.9462 0.9737 0.9598 0.999501079

DWMC+HT 0.9288 0.8416 0.927 0.9659 0.9461 0.999809508

DWMC+HAT 0.933 0.8513 0.9323 0.9666 0.9491 0.999644093

DWMC+ARF 0.9449 0.8775 0.9388 0.9786 0.9583 0.995349983

DWMC+EFDT 0.9323 0.8499 0.9328 0.9648 0.9485 0.999585037

DWMC+VFDRC 0.9232 0.8313 0.9362 0.9455 0.9408 0.999847256

UB-O+HT 0.9269 0.8348 0.9113 0.9824 0.9455 0.999723845

UB-O+HAT 0.9308 0.8439 0.9158 0.9833 0.9484 0.999341514

UB-O+ARF 0.9306 0.8429 0.9122 0.9877 0.9484 0.982658624

UB-O+VFDRC 0.9301 0.8445 0.9281 0.9667 0.9470 0.999657887

OB-ADWIN+HT 0.9326 0.8495 0.9267 0.9726 0.9490 0.999652466

the fact that for each classification task, there is a set of non-
dominated algorithms, with comparable performance metrics
that can be utilized in real-life applications. The ranking results
in Figures 5, 7, and 9 provide an insight into the algorithms
that are superior to other members in the corresponding non-
dominated set, considering the trade-offs observed under all
performance metrics. Although the results presented in Sections
4.1, 4.2, and 4.3 highlight the most suitable algorithms for each
classification task, it is worth noting that the LB+EFDT (i.e.,
leveraging bagging algorithm, whose base estimator is set to the
extremely fast decision tree) demonstrates consistent compe-

tence to occupy one of the top-ranking positions for each of the
considered datasets because of its competitive performance met-
rics, in addition to its reasonably acceptable model size. This
algorithm maintains an ensemble of n EFDT base classifiers,
where n is set to 10 by default in the utilized evaluation plat-
form [33]. To classify an incoming instance, every individual
classifier will produce a prediction (i.e., a vote), and the final
classification result is obtained by aggregating the individual
predictions. Following Condorcet’s jury theorem [54–56], there
is theoretical proof that the error rate of an ensemble approaches
0, in the limit, provided that two conditions are satisfied. First,

117 | Mutaz Al-Tarawneh

http://doi.org/10.5391/IJFIS.2021.21.2.101

individual base classifiers must perform better than random
guessing. Second, individual classification models must exhibit
diversity, that is, they should not produce correlated errors. In
the case of the LB+EFDT algorithm, the EFDT algorithm is
used as the base classification model. The EFDT is a refinement
over the HT algorithm. Whereas the HT algorithm delays the
selection of a split at a node until it is confident that it has deter-
mined the best split, the EFDT algorithm selects and deploys a
split as soon as it is confident that the split is useful. In addition,
the HT algorithm never revisits its splitting decision, while the
EFDT algorithm revisits its splitting decision, replacing the
split if it later becomes evident that a better split is available.
Hence, the EFDT algorithm can learn rapidly from incoming
instances with an inbuilt tolerance against concept drift, uti-
lizing the most advantageous splitting decision recognized to
date [41]. Consequently, the EFDT algorithm is considered a
viable base classifier that meets the first condition implied by
Condorcet’s jury theorem.

The LB algorithm employs online bagging to train its base
models (i.e., classifiers). In this regard, as each incoming classi-
fication instance is observed, online re-sampling is performed
by presenting that instance to each model k ∼ Poisson (λ)
times and updating each model accordingly. The value of k is
regarded as the weight of the incoming instance. To increase
online re-sampling, the LB algorithm uses a higher value of the
λ parameter of the Poisson distribution, which is set to six by
default. With this value of λ, the LB algorithm causes more
randomness in the weights of the incoming instances. Hence, it
achieves a higher input space diversity by assigning a different
range of weights to each incoming instance. In addition, the
LB algorithm leverages the bagging performance by adding
randomization at the output of the ensemble using output codes.
As shown in Section 2.5, the LB algorithm assigns to each
possible class label a binary string of length n, where n is the
number of base classifiers in the ensemble. Each base classifier
learns one bit in a binary string. Unlike standard ensemble
methods, the LB algorithm utilizes random output codes in-
stead of deterministic ones. In other words, while the base
classifiers in the standard methods predict the same function,
using output codes allows each classifier in the LB ensemble
to predict a different function [44]. This would minimize the
influence of correlations between the base classifiers and, in
turn, increase the diversity of the ensemble [57,58]. Hence, the
introduction of randomization to the input and output of the
ensemble classifiers yields, to some extent, a diversified ensem-
ble satisfying the second condition imposed by Condorcet’s

jury theorem. Furthermore, the LB algorithm uses the ADWIN
algorithm to deal with concept drift, with one ADWIN instance
for each classifier in the ensemble. Each time a concept drift is
detected, the worst classifier is reset. Hence, the LB algorithm
always monitors the quality of its online learning process and
adheres to the current class distribution of incoming classifica-
tion instances. In general, the inherent diversity among its base
classifiers compensates for the classification errors induced by
any individual classifier. This can be clearly observed in Table 5,
where a single EFDT classifier achieved an accuracy of 0.7936,
and the accuracy of the LB+EFDT ensemble reached 0.9326.
Altogether, the LB+EFDT algorithm demonstrated the ability to
maintain a noticeable performance under all considered datasets
and performance metrics. Hence, it could be considered a feasi-
ble choice for online data stream classification in real-life VEC
environments.

5. Conclusion

VEC has recently become an integral part of intelligent trans-
portation systems. In these systems, workload orchestration
plays a crucial role in selecting the most appropriate computa-
tional node to execute tasks generated from vehicular applica-
tions. The continuous streams of tasks generated from vehicular
applications pose significant challenges in data management,
execution, and storage. Online ML algorithms can address
continuous data streams and manage large data sizes. Hence,
this paper has addressed the potential application of online data
stream classification algorithms to support workload orches-
tration in VEC environments. These algorithms can be used
to predict the ability of the available computational nodes to
successfully handle a particular task. In this work, various on-
line data stream classification algorithms were evaluated based
on synthetic datasets generated from simulated VEC environ-
ments. In addition, a MCDA technique was employed to rank
various algorithms based on the obtained performance metrics.
The evaluation results show that the considered algorithms can
handle online classification operations with noticeable trade-
offs and dominance relations with respect to their obtained
performance. In addition, the employed multi-criteria decision
analysis technique demonstrated the ability to rank different al-
gorithms and identify the most appropriate algorithms to handle
online classification in VEC environments.

Future work will consider implementing a workload orches-
tration algorithm based on the findings of this study to show
how online data stream classification can enhance orchestration

www.ijfis.org Data Stream Classification Algorithms for Workload Orchestration in Vehicular Edge Computing: A Comparative Evaluation | 118

International Journal of Fuzzy Logic and Intelligent Systems, vol. 21, no. 2, June 2021

performance in dynamically changing VEC environments.

Conflict of Interest

No potential conflict of interest relevant to this article was
reported.

References

[1] H. Guo, J. Liu, J. Ren, and Y. Zhang, “Intelligent task
offloading in vehicular edge computing networks,” IEEE
Wireless Communications, vol. 27, no. 4, pp. 126-132,
2020. https://doi.org/10.1109/MWC.001.1900489

[2] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda,
“A survey of autonomous driving: common practices
and emerging technologies,” IEEE Access, vol. 8, pp.
58443-58469, 2020. https://doi.org/10.1109/ACCESS.
2020.2983149

[3] J. Neil, L. Cosart, and G. Zampetti, “Precise timing for
vehicle navigation in the smart city: an overview,” IEEE
Communications Magazine, vol. 58, no. 4, pp. 54-59, 2020.
https://doi.org/10.1109/MCOM.001.1900596

[4] D. Sabella, D. Brevi, E. Bonetto, A. Ranjan, A. Manzalini,
and D. Salerno, “MEC-based infotainment services for
smart roads in 5G environments,” in Proceedings of 2020
IEEE 91st Vehicular Technology Conference (VTC2020-
Spring), Antwerp, Belgium, 2020, pp. 1-6. https://doi.org/
10.1109/VTC2020-Spring48590.2020.9128807

[5] R. F. Atallah, C. M. Assi, and M. J. Khabbaz, “Scheduling
the operation of a connected vehicular network using deep
reinforcement learning,” IEEE Transactions on Intelligent
Transportation Systems, vol. 20, no. 5, pp. 1669-1682,
2019. https://doi.org/10.1109/TITS.2018.2832219

[6] Y. Sun, X. Guo, S. Zhou, Z. Jiang, X. Liu, and Z. Niu,
“Learning-based task offloading for vehicular cloud com-
puting systems,” in Proceedings of 2018 IEEE Interna-
tional Conference on Communications (ICC), Kansas
City, MO, 2018, pp. 1-7. https://doi.org/10.1109/ICC.
2018.8422661

[7] L. Liu, C. Chen, Q. Pei, S. Maharjan, and Y. Zhang, “Ve-
hicular edge computing and networking: a survey,” Mobile
Networks and Applications, 2020. https://doi.org/10.1007/
s11036-020-01624-1

[8] K. Zhang, Y. Mao, S. Leng, S. Maharjan, and Y. Zhang,
“Optimal delay constrained offloading for vehicular edge
computing networks,” in Proceedings of 2017 IEEE In-
ternational Conference on Communications (ICC), Paris,
France, 2017, pp. 1-6. https://doi.org/10.1109/ICC.2017.
7997360

[9] S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, and W. Shi,
“Edge computing for autonomous driving: opportunities
and challenges,” Proceedings of the IEEE, vol. 107, no.
8, pp. 1697-1716, 2019. https://doi.org/10.1109/JPROC.
2019.2915983

[10] Y. F. Payalan and M. A. Guvensan, “Towards nextgener-
ation vehicles featuring the vehicle intelligence,” IEEE
Transactions on Intelligent Transportation Systems, vol.
21, no. 1, pp. 30-47, 2020. https://doi.org/10.1109/TITS.
2019.2917866

[11] C. Sonmez, A. Ozgovde, and C. Ersoy, “Fuzzy workload
orchestration for edge computing,” IEEE Transactions on
Network and Service Management, vol. 16, no. 2, pp. 769-
782, 2019. https://doi.org/10.1109/TNSM.2019.2901346

[12] Y. Wang, S. Wang, S. Zhang, and H. Cen, “An edge-
assisted data distribution method for vehicular network
services,” IEEE Access, vol. 7, pp. 147713-147720, 2019.
https://doi.org/10.1109/ACCESS.2019.2946484

[13] C. Sonmez, C. Tunca, A. Ozgovde, and C. Ersoy, “Ma-
chine learning-based workload orchestrator for vehicular
edge computing,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 22, no. 4, pp. 2239-2251, 2021.
https://doi.org/10.1109/TITS.2020.3024233

[14] J. S. Rojas, A. Pekar, A. Rendon, and J. C. Corrales,
“Smart user consumption profiling: Incremental learning-
based OTT service degradation,” IEEE Access, vol. 8, pp.
207426-207442, 2020. https://doi.org/10.1109/ACCESS.
2020.3037971

[15] D. Nallaperuma, R. Nawaratne, T. Bandaragoda, A.
Adikari, S. Nguyen, T. Kempitiya, D. De Silva, D. Ala-
hakoon, and D. Pothuhera, “Online incremental machine
learning platform for big data-driven smart traffic man-
agement,” IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 20, no. 12, pp. 4679-4690, 2019.
https://doi.org/10.1109/TITS.2019.2924883

119 | Mutaz Al-Tarawneh

https://doi.org/10.1109/MWC.001.1900489
https://doi.org/10.1109/ACCESS.2020.2983149
https://doi.org/10.1109/ACCESS.2020.2983149
https://doi.org/10.1109/MCOM.001.1900596
https://doi.org/10.1109/VTC2020-Spring48590.2020.9128807
https://doi.org/10.1109/VTC2020-Spring48590.2020.9128807
https://doi.org/10.1109/TITS.2018.2832219
https://doi.org/10.1109/ICC.2018.8422661
https://doi.org/10.1109/ICC.2018.8422661
https://doi.org/10.1007/s11036-020-01624-1
https://doi.org/10.1007/s11036-020-01624-1
https://doi.org/10.1109/ICC.2017.7997360
https://doi.org/10.1109/ICC.2017.7997360
https://doi.org/10.1109/JPROC.2019.2915983
https://doi.org/10.1109/JPROC.2019.2915983
https://doi.org/10.1109/TITS.2019.2917866
https://doi.org/10.1109/TITS.2019.2917866
https://doi.org/10.1109/TNSM.2019.2901346
https://doi.org/10.1109/ACCESS.2019.2946484
https://doi.org/10.1109/TITS.2020.3024233
https://doi.org/10.1109/ACCESS.2020.3037971
https://doi.org/10.1109/ACCESS.2020.3037971
https://doi.org/10.1109/TITS.2019.2924883

http://doi.org/10.5391/IJFIS.2021.21.2.101

[16] U. Adhikari, T. H. Morris, and S. Pan, “Applying Ho-
effding adaptive trees for real-time cyber-power event
and intrusion classification,” IEEE Transactions on Smart
Grid, vol. 9, no. 5, pp. 4049-4060, 2018. https://doi.org/
10.1109/TSG.2017.2647778

[17] X. Li, Y. Zhou, Z. Jin, P. Yu, and S. Zhou, “A classifi-
cation and novel class detection algorithm for concept
drift data stream based on the cohesiveness and separation
index of Mahalanobis distance,” Journal of Electrical and
Computer Engineering, vol. 2020, article. 4027423, 2020.
https://doi.org/10.1155/2020/4027423

[18] L. Rutkowski, M. Jaworski, and P. Duda, “Basic concepts
of data stream mining,” in Stream Data Mining: Algo-
rithms and Their Probabilistic Properties. Cham, Switzer-
land: Springer, 2020, pp. 13-33. https://doi.org/10.1007/
978-3-030-13962-9 2

[19] A. Gepperth and B. Hammer, “Incremental learning algo-
rithms and applications,” in Proceedings of the 24th Euro-
pean Symposium on Artificial Neural Networks (ESANN),
Bruges, Belgium, 2016.

[20] Q. Yang, Y. Gu, and D. Wu, “Survey of incremental learn-
ing,” in Proceedings of 2019 Chinese Control And De-
cision Conference (CCDC), Nanchang, China, 2019, pp.
399-404. https://doi.org/10.1109/CCDC.2019.8832774

[21] K. K. Wankhade, S. S. Dongre, and K. C. Jondhale, “Data
stream classification: a review,” Iran Journal of Computer
Science, vol. 3, pp. 239-260, 2020. https://doi.org/10.1007/
s42044-020-00061-3

[22] Z. El Mrabet, D. F. Selvaraj, and P. Ranganathan, “Adap-
tive Hoeffding tree with transfer learning for streaming
synchrophasor data sets,” in Proceedings of 2019 IEEE
International Conference on Big Data (Big Data), Los An-
geles, CA, 2019, pp. 5697-5704. https://doi.org/10.1109/
BigData47090.2019.9005720

[23] C. Nixon, M. Sedky, and M. Hassan, “Practical application
of machine learning based online intrusion detection to
internet of things networks,” in Proceedings of 2019 IEEE
Global Conference on Internet of Things (GCIoT), Dubai,
UAE, 2019, pp. 1-5. https://doi.org/10.1109/GCIoT47977.
2019.9058410

[24] V. G. T. Da Costa, E. J. Santana, J. F. Lopes, and S. Barbon,
“Evaluating the four-way performance trade-off for stream

classification,” in Green, Pervasive, and Cloud Computing.
Cham, Switzerland: Springer, 2019, pp. 3-17. https://doi.
org/10.1007/978-3-030-19223-5 1

[25] J. F. Lopes, E. J. Santana, V. G. T. da Costa, B. B. Zarpelao,
and S. B. Junior, “Evaluating the four-way performance
trade-off for data stream classification in edge computing,”
IEEE Transactions on Network and Service Management,
vol. 17, no. 2, pp. 1013-1025, 2020. https://doi.org/10.
1109/TNSM.2020.2983921

[26] A. Bifet, R. Gavalda, G. Holmes, and B. Pfahringer, Ma-
chine Learning for Data Streams: With Practical Exam-
ples in MOA. Cambridge, MA: MIT Press, 2018.

[27] S. Greco, J. Figueira, and M. Ehrgott, Multiple Criteria
Decision Analysis. New York, NY: Springer, 2016.

[28] M. Cinelli, M. Kadzinski, M. Gonzalez, and R. Slowin-
ski, “How to support the application of multiple crite-
ria decision analysis? Let us start with a comprehensive
taxonomy,” Omega, vol. 96, article no. 102261, 2020.
https://doi.org/10.1016/j.omega.2020.102261

[29] M. Cinelli, M. Spada, W. Kim, Y. Zhang, and P. Burgherr,
“MCDA Index Tool: an interactive software to develop in-
dices and rankings,” Environment Systems and Decisions,
vol. 41, no. 1, pp. 82-109, 2021. https://doi.org/10.1007/
s10669-020-09784-x

[30] L. Diaz-Balteiro, J. Gonzalez-Pachon, and C. Romero,
“Measuring systems sustainability with multi-criteria meth-
ods: a critical review,” European Journal of Opera-
tional Research, vol. 258, no. 2, pp. 607-616, 2017.
https://doi.org/10.1016/j.ejor.2016.08.075

[31] S. El Gibari, T. Gomez, and F. Ruiz, “Building composite
indicators using multicriteria methods: a review,” Journal
of Business Economics, vol. 89, no. 1, pp. 1-24, 2019.
https://doi.org/10.1007/s11573-018-0902-z

[32] S. Greco, A. Ishizaka, M. Tasiou, and G. Torrisi, “On the
methodological framework of composite indices: a review
of the issues of weighting, aggregation, and robustness,”
Social Indicators Research, vol. 141, no. 1, pp. 61-94,
2019. https://doi.org/10.1007/s11205-017-1832-9

[33] J. Montiel, J. Read, A. Bifet, and T. Abdessalem, “Scikit-
multiflow: a multi-output streaming framework,” The
Journal of Machine Learning Research, vol. 19, no. 1,
pp. 2915-2914, 2018.

www.ijfis.org Data Stream Classification Algorithms for Workload Orchestration in Vehicular Edge Computing: A Comparative Evaluation | 120

https://doi.org/10.1109/TSG.2017.2647778
https://doi.org/10.1109/TSG.2017.2647778
https://doi.org/10.1155/2020/4027423
https://doi.org/10.1007/978-3-030-13962-9_2
https://doi.org/10.1007/978-3-030-13962-9_2
https://doi.org/10.1109/CCDC.2019.8832774
https://doi.org/10.1007/s42044-020-00061-3
https://doi.org/10.1007/s42044-020-00061-3
https://doi.org/10.1109/BigData47090.2019.9005720
https://doi.org/10.1109/BigData47090.2019.9005720
https://doi.org/10.1109/GCIoT47977.2019.9058410
https://doi.org/10.1109/GCIoT47977.2019.9058410
https://doi.org/10.1007/978-3-030-19223-5_1
https://doi.org/10.1007/978-3-030-19223-5_1
https://doi.org/10.1109/TNSM.2020.2983921
https://doi.org/10.1109/TNSM.2020.2983921
https://doi.org/10.1016/j.omega.2020.102261
https://doi.org/10.1007/s10669-020-09784-x
https://doi.org/10.1007/s10669-020-09784-x
https://doi.org/10.1016/j.ejor.2016.08.075
https://doi.org/10.1007/s11573-018-0902-z
https://doi.org/10.1007/s11205-017-1832-9

International Journal of Fuzzy Logic and Intelligent Systems, vol. 21, no. 2, June 2021

[34] G. I. Webb, R. Hyde, H. Cao, H. L. Nguyen, and F. Pe-
titjean, “Characterizing concept drift,” Data Mining and
Knowledge Discovery, vol. 30, no. 4, pp. 964-994, 2016.
https://doi.org/10.1007/s10618-015-0448-4

[35] J. Demsar and Z. Bosnic, “Detecting concept drift in data
streams using model explanation,” Expert Systems with
Applications, vol. 92, pp. 546-559, 2018. https://doi.org/
10.1016/j.eswa.2017.10.003

[36] K. Forster, S. Monteleone, A. Calatroni, D. Roggen, and
G. Troster, “Incremental kNN classifier exploiting correct-
error teacher for activity recognition,” in Proceedings of
2010 9th International Conference on Machine Learning
and Applications, Washington, DC, 2010, pp. 445-450.
https://doi.org/10.1109/ICMLA.2010.72

[37] A. Bifet and R. Gavalda, “Learning from time-changing
data with adaptive windowing,” in Proceedings of the
2007 SIAM International Conference on Data Mining,
Minneapolis, MN, 2007, pp. 443-448. https://doi.org/10.
1137/1.9781611972771.42

[38] V. Losing, B. Hammer, and H. Wersing, “KNN classifier
with self adjusting memory for heterogeneous concept
drift,” in Proceedings of 2016 IEEE 16th International
Conference on Data Mining (ICDM), Barcelona, Spain,
2016, pp. 291-300. https://doi.org/10.1109/ICDM.2016.
0040

[39] G. Hulten, L. Spencer, and P. Domingos, “Mining time-
changing data streams,” in Proceedings of the 7th ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, San Francisco, CA, 2001, pp.
97-106. https://doi.org/10.1145/502512.502529

[40] A. Bifet and R. Gavalda, “Adaptive learning from evolving
data streams,” in Advances in Intelligent Data Analysis.
Heidelberg, Germany: Springer, 2009, pp. 249-260. https:
//doi.org/10.1007/978-3-642-03915-7 22

[41] C. Manapragada, G. I. Webb, and M. Salehi, “Extremely
fast decision tree,” in Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discov-
ery & Data Mining, London, UK, 2018, pp. 1953-1962.
https://doi.org/10.1145/3219819.3220005

[42] P. Kosina and J. Gama, “Very fast decision rules for
classification in data streams,” Data Mining and Knowl-

edge Discovery, vol. 29, no. 1, pp. 168-202, 2015. https:
//doi.org/10.1007/s10618-013-0340-z

[43] N. C. Oza, “Online bagging and boosting,” in Proceed-
ings of the IEEE International Conference on Systems,
Man and Cybernetics, Waikoloa, HI, 2001, pp. 2340-2345.
https://doi.org/10.1109/ICSMC.2005.1571498

[44] A. Bifet, G. Holmes, and B. Pfahringer, “Leveraging bag-
ging for evolving data streams,” in Machine Learning
and Knowledge Discovery in Databases. Heidelberg, Ger-
many: Springer, 2010, pp. 135-150. https://doi.org/10.
1007/978-3-642-15880-3 15

[45] B. Wang and J. Pineau, “Online bagging and boosting for
imbalanced data streams,” IEEE Transactions on Knowl-
edge and Data Engineering, vol. 28, no.12, pp. 3353-3366,
2016. https://doi.org/10.1109/TKDE.2016.2609424

[46] H. M. Gomes, A. Bifet, J. Read, J. P. Barddal, F. En-
embreck, B. Pfharinger, G. Holmes, and T. Abdessalem,
“Adaptive random forests for evolving data stream classifi-
cation,” Machine Learning, vol. 106, no. 9, pp. 1469-1495,
2017. https://doi.org/10.1007/s10994-017-5642-8

[47] J. Z. Kolter and M. A. Maloof, “Dynamic weighted major-
ity: an ensemble method for drifting concepts,” he Jour-
nal of Machine Learning Research, vol. 8, pp. 2755-2790,
2007.

[48] S. Wang and X. Yao, “Diversity analysis on imbalanced
data sets by using ensemble models,” in Proceedings of
2009 IEEE Symposium on Computational Intelligence and
Data Mining, Nashville, TN, 2009, pp. 324-331. https:
//doi.org/10.1109/CIDM.2009.4938667

[49] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.
Kegelmeyer, “SMOTE: synthetic minority over-sampling
technique,” Journal of Artificial Intelligence Research, vol.
16, pp. 321-357, 2002. https://doi.org/10.1613/jair.953

[50] C. Sonmez, A. Ozgovde, and C. Ersoy, “Edgecloudsim:
an environment for performance evaluation of edge com-
puting systems,” Transactions on Emerging Telecommu-
nications Technologies, vol. 29, no. 11, article no. e3493,
2018. https://doi.org/10.1002/ett.3493

[51] T. Vasiloudis, F. Beligianni, and G. De Francisci Morales,
“BoostVHT: boosting distributed streaming decision trees,”

121 | Mutaz Al-Tarawneh

https://doi.org/10.1007/s10618-015-0448-4
https://doi.org/10.1016/j.eswa.2017.10.003
https://doi.org/10.1016/j.eswa.2017.10.003
https://doi.org/10.1109/ICMLA.2010.72
https://doi.org/10.1137/1.9781611972771.42
https://doi.org/10.1137/1.9781611972771.42
https://doi.org/10.1109/ICDM.2016.0040
https://doi.org/10.1109/ICDM.2016.0040
https://doi.org/10.1145/502512.502529
https://doi.org/10.1007/978-3-642-03915-7_22
https://doi.org/10.1007/978-3-642-03915-7_22
https://doi.org/10.1145/3219819.3220005
https://doi.org/10.1007/s10618-013-0340-z
https://doi.org/10.1007/s10618-013-0340-z
https://doi.org/10.1109/ICSMC.2005.1571498
https://doi.org/10.1007/978-3-642-15880-3_15
https://doi.org/10.1007/978-3-642-15880-3_15
https://doi.org/10.1109/TKDE.2016.2609424
https://doi.org/10.1007/s10994-017-5642-8
https://doi.org/10.1109/CIDM.2009.4938667
https://doi.org/10.1109/CIDM.2009.4938667
https://doi.org/10.1613/jair.953
https://doi.org/10.1002/ett.3493

http://doi.org/10.5391/IJFIS.2021.21.2.101

in Proceedings of the 2017 ACM on Conference on Infor-
mation and Knowledge Management, Singapore, 2017,
pp. 899-908. https://doi.org/10.1145/3132847.3132974

[52] A. Bifet, G. de Francisci Morales, J. Read, G. Holmes,
and B. Pfahringer, “Efficient online evaluation of big
data stream classifiers,” in Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, Sydney, Australia, 2015, pp. 59-68.
https://doi.org/10.1145/2783258.2783372

[53] H. Ishibuchi, H. Masuda, and Y. Nojima, “Selecting
a small number of non-dominated solutions to be pre-
sented to the decision maker,” in Proceedings of 2014
IEEE International Conference on Systems, Man, and Cy-
bernetics (SMC), San Diego, CA, 2014, pp. 3816-3821.
https://doi.org/10.1109/SMC.2014.6974525

[54] L. K. Hansen and P. Salamon, “Neural network ensem-
bles,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 12, no. 10, pp. 993-1001, 1990.
https://doi.org/10.1109/34.58871

[55] K. K. Ladha, “Condorcet’s jury theorem in light of de
Finetti’s theorem,” Social Choice and Welfare, vol. 10, no.
1, pp. 69-85, 1993. https://doi.org/10.1007/BF00187434

[56] J. N. van Rijn, G. Holmes, B. Pfahringer, and J. Van-
schoren, “The online performance estimation framework:
heterogeneous ensemble learning for data streams,” Ma-
chine Learning, vol. 107, no. 1, pp. 149-176, 2018.
https://doi.org/10.1007/s10994-017-5686-9

[57] Y. Lv, S. Peng, Y. Yuan, C. Wang, P. Yin, J. Liu, and
C. Wang, “A classifier using online bagging ensemble
method for big data stream learning,” Tsinghua Science
and Technology, vol. 24, no. 4, pp. 379-388, 2019. https:
//doi.org/10.26599/TST.2018.9010119

[58] M. Kolarik, M. Sarnovsky, and J. Paralic, “Diversity in
ensemble model for classification of data streams with
concept drift,” in Proceedings of 2021 IEEE 19th World
Symposium on Applied Machine Intelligence and Informat-
ics (SAMI), Herl’any, Slovakia, 2021, pp. 000355-000360.
https://doi.org/10.1109/SAMI50585.2021.9378625

Mutaz Al-Tarawneh is an associate pro-
fessor in computer engineering at Mutah
University, Jordan. He obtained his Ph.D.
in Computer Engineering from Southern
Illinois University Carbondale, USA, in
2010. His current research interests in-

clude cloud computing, machine learning, and IoT systems.
E-mail: mutaz.altarawneh@mutah.edu.jo

www.ijfis.org Data Stream Classification Algorithms for Workload Orchestration in Vehicular Edge Computing: A Comparative Evaluation | 122

https://doi.org/10.1145/3132847.3132974
https://doi.org/10.1145/2783258.2783372
https://doi.org/10.1109/SMC.2014.6974525
https://doi.org/10.1109/34.58871
https://doi.org/10.1007/BF00187434
https://doi.org/10.1007/s10994-017-5686-9
https://doi.org/10.26599/TST.2018.9010119
https://doi.org/10.26599/TST.2018.9010119
https://doi.org/10.1109/SAMI50585.2021.9378625

	Introduction
	Data Stream Classification
	Bayes Learning Algorithms
	Lazy Learning Algorithms
	Tree-Based Learning Algorithms
	Rule-Based Learning Algorithms
	Ensemble Learning Algorithms

	Research Tools and Methodology
	VEC System Model
	Dataset Construction
	Evaluation Methodology

	Results and Analysis
	Edge Dataset Results
	Cloud via RSU Dataset Results
	Cloud via CN Dataset Results

	Conclusion

